999 resultados para Alpha-msh


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melanin granule (melanosome) dispersion within Xenopus laevis melanophores is evoked either by light or alpha-MSH. We have previously demonstrated that the initial biochemical steps of light and alpha-MSH signaling are distinct, since the increase in cAMP observed in response to alpha-MSH was not seen after light exposure. cAMP concentrations in response to alpha-MSH were significantly lower in cells pre-exposed to light as compared to the levels in dark-adapted melanophores. Here we demonstrate the presence of an adenylyl cyclase (AC) in the Xenopus melanophore, similar to the mammalian type IX which is inhibited by Ca(2+)-calmodulin-activated phosphatase. This finding supports the hypothesis that the cyclase could be negatively modulated by a light-promoted Ca(2+) increase. In fact, the activity of calcineurin PP2B phosphatase was increased by light, which could result in AC IX inhibition, thus decreasing the response to alpha-MSH. St-Ht31, a disrupting agent of protein kinase A (PKA)-anchoring kinase A protein (AKAP) complex totally blocked the melanosome dispersing response to alpha-MSH, but did not impair the photo-response in Xenopus melanophores. Sequence comparison of a melanophore AKAP partial clone with GenBank sequences showed that the anchoring protein was a gravin-like adaptor previously sequenced from Xenopus non-pigmentary tissues. Co-immunoprecipitation of Xenopus AKAP and the catalytic subunit of PKA demonstrated that PKA is associated with AKAP and it is released in the presence of alpha-MSH. We conclude that in X laevis melanophores, AKAP12 (gravin-like) contains a site for binding the inactive PKA thus compartmentalizing PKA signaling and also possesses binding sites for PKC. Light diminishes alpha-MSH-induced increase of cAMP by increasing calcineurin (PP2B) activity, which in turn inhibits adenylyl cyclase type IX, and/or by activating PKC, which phosphorylates the gravin-like molecule, thus destabilizing its binding to the cell membrane. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Alpha-, beta- and gamma-melanocyte stimulating hormones (MSHs) are peptides derived from the ACTH precursor, pro-opiomelanocortin. All three peptides have been highly conserved throughout evolution but their exact biological function in mammals is still largely obscure. In recent years, there has been a surge of interest in alpha-MSH and its role in the regulation of feeding. Gamma-MSH by contrast has been shown to be involved in the regulation of adrenal steroidogenesis and also has effects on the cardiovascular and renal systems. This review will provide an overview of the role that gamma-MSH peptides play in the regulation of adrenal steroidogenesis. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of tubero-infundibular dopaminergic neurons (TIDA) on the release of prolactin (PRL) and alpha-melanocyte stimulating hormone (alpha-MSH) was studied in median eminence-lesioned (MEL) male rats (N = 6-28). Plasma PRL and alpha-MSH levels were significantly elevated 2 (86.1 +/- 19.8 and 505.1 +/- 19.1 ng/ml), 4 (278.7 +/- 15.5 and 487.4 +/- 125.1 ng/ml), 7 (116.2 +/- 16.2 and 495.8 +/- 62.6 ng/ml) and 14 (247.3 +/- 26.1 and 448.4 +/- 63.8 ng/ml) days after MEL when compared to sham-operated control animals (55.5 +/- 13.4 and 56.2 +/- 6.1 ng/ml, respectively). MEL altered plasma PRL and alpha-MSH levels in a differential manner, with a 1.5-to 5.0-fold increase in PRL and an 8.0-to 9.0-fold increase in alpha-MSH. The increase of alpha-MSH levels occurred abruptly and remained constant from days 2 to 14. These observations indicate that TIDA plays an important role in the pituitary release of PRL and alpha-MSH and provide evidence that the release of the two hormones occurs in a differential manner.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Melasma is a common acquired symmetrical hypermelanosis characterized by irregular light- to dark-brown macules on sun-exposed skin areas. The literature shows few studies on its physiopathogeny. However, changes in α-melanocyte stimulating hormone (α-MSH) secretion and melanocortin-1 receptor (MC1-R) expression may play a role to trigger this condition. Biopsies were taken from both melasma skin and adjacent perilesional normal skin of 44 patients. The biopsies were submitted for hematoxylin and eosin and Fontana-Masson staining and immunohistochemistry with Melan-A, α-MSH, and MC1-R, and processed for transmission electron microscopy. In some cases, they were submitted to MC1-R gene expression analysis by real-time polymerase chain reaction. Increased lymphohistiocytic infiltrate and solar elastosis, higher epidermal melanin were observed in melasma skin. Electron microscopy revealed a greater number of mature melanosomes in keratinocytes and melanocytes, and more prominent cytoplasmic organelles in melasma skin. There was no difference in melanocyte number between areas. However, melanocytes were larger and more dendritic in melasma skin. Immunohistochemistry with α-MSH and MC1-R showed significant labeling in melasmic epidermis but MC1-R messenger ribonucleic acid (RNAm) did not show significant quantitative difference between melasma and normal skin. © 2010 by Lippincott Williams & Wilkins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Exposure to ultraviolet (UV) radiation causes various forms of acute and chronic skin damage, including immunosuppression, inflammation, premature aging and photodamage. Furthermore, it induces the generation of reactive oxygen species, produces proinflammatory cytokines and melanocyte-stimulating hormone (MSH) and increases tyrosinase activity. The aim of this study was to evaluate the potential photoprotective effects of Rheum rhaponticum L. rhizome extract on human UV-stimulated melanocytes.Methods: The effects of Rheum rhaponticum rhizome extract on tyrosine kinase activity, and on interleukin-1α (IL-1α), tumour necrosis factor α (TNF-α), and α-MSH production in human epidermal melanocytes were evaluated under UV-stimulated and non-stimulated conditions. Antioxidant activity was evaluated by lipid peroxidation and 1,1-dyphenyl-2-picryl-hydrazyl (DPPH) assays, while anti-tyrosinase activity was evaluated by the mushroom tyrosinase method.Results: Rheum rhaponticum L. rhizome extract showed in vitro antioxidant properties against lipid peroxidation, free radical scavenging and anti-tyrosinase activities, and inhibited the production of IL-1α, TNF-α, α-MSH, and tyrosine kinase activity in melanocytes subjected to UV radiation.Conclusions: These results support the inclusion of Rheum rhaponticum L. rhizome extract into cosmetic, sunscreen and skin care products for the prevention or reduction of photodamage. © 2013 Silveira et al; licensee BioMed Central Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

alpha-Melanocyte-stimulating hormone (alpha-MSH) is a potent inhibitory agent in all major forms of inflammation. To identify a potential mechanism of antiinflammatory action of alpha-MSH, we tested its effects on production of nitric oxide (NO), believed to be a mediator common to all forms of inflammation. We measured NO and alpha-MSH production in RAW 264.7 cultured murine macrophages stimulated with bacterial lipopolysaccharide and interferon gamma. alpha-MSH inhibited production of NO, as estimated from nitrite production and nitration of endogenous macrophage proteins. This occurred through inhibition of production of NO synthase II protein; steady-state NO synthase II mRNA abundance was also reduced. alpha-MSH increased cAMP accumulation in RAW cells, characteristic of alpha-MSH receptors in other cell types. RAW cells also expressed mRNA for the primary alpha-MSH receptor (melanocortin 1). mRNA for proopiomelanocortin, the precursor molecular of alpha-MSH, was expressed in RAW cells, and tumor necrosis factor alpha increased production and release of alpha-MSH. These results suggest that the proinflammatory cytokine tumor necrosis factor alpha can induce macrophages to increase production of alpha-MSH, which then becomes available to act upon melanocortin receptors on the same cells. Such stimulation of melanocortin receptors could modulate inflammation by inhibiting the production of NO. The results suggest that alpha-MSH is an autocrine factor in macrophages which modulates inflammation by counteracting the effects of proinflammatory cytokines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lactation is an energy-demanding process characterized by massive food and water consumption, cessation of the reproductive cycle and induction of maternal behavior. During lactation, melanin-concentrating hormone (MCH) mRNA and peptide expression are increased in the medial preoptic area (MPO) and in the anterior paraventricular nucleus of the hypothalamus. Here we show that MCH neurons in the MPO coexpress the GABA synthesizing enzyme GAD-67 mRNA. We also show that MCH neurons in the MPO of female rats are innervated by neuropeptides that control energy homeostasis including agouti-related protein (AgRP), alpha-melanocyte stimulating hormone (alpha MSH) and cocaine- and amphetamine-regulated transcript (CART). Most of these inputs originate from the arcuate nucleus neurons. Additionally, using injections of retrograde tracers we found that CART neurons in the ventral premammillary nucleus also innervate the MPO. We then assessed the projections of the female MPO using injections of anterograde tracers. The MPO densely innervates hypothalamic nuclei related to reproductive control including the anteroventral periventricular nucleus, the ventrolateral subdivision of the ventromedial nucleus (VMHvl) and the ventral premammillary nucleus (PMV). We found that the density of MCH-ir fibers is increased in the VMHvl and PMV during lactation. Our findings suggest that the expression of MCH in the MPO may be induced by changing levels of neuropeptides involved in metabolic control. These MCH/GABA neurons may, in turn, participate in the suppression of cyclic reproductive function and/or sexual behavior during lactation through projections to reproductive control sites. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To date, there has been only one in vitro study of the relationship between neuropeptide EI (NEI) and the hypothalamic-pituitary-thyroid (HPT) axis. To investigate the possible relationship between NEI and the HPT axis, we developed a rat model of hypothyroidism and hyperthyroidism that allows us to determine whether NEI content is altered in selected brain areas after treatment, as well as whether such alterations are related to the time of day. Hypothyroidism and hyperthyroidism, induced in male rats, with 6-propyl-1-thiouracil and L-thyroxine, respectively, were confirmed by determination of triiodothyronine, total thyroxine, and thyrotropin levels. All groups were studied at the morning and the afternoon. In rats with hypothyroidism, NEI concentration, evaluated on postinduction days 7 and 24, was unchanged or slightly elevated on day 7 but was decreased on day 24. In rats with hyperthyroidism, NEI content, which was evaluated after 4 days of L-thyroxine administration, was slightly elevated, principally in the preoptic area in the morning and in the median eminence-arcuate nucleus and pineal gland in the afternoon, the morning and afternoon NEI contents being similar in the controls. These results provide the bases to pursue the study of the interaction between NEI and the HPT axis. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The highly hydrophobic fluorophore Laurdan (6-dodecanoyl-2-(dimethylaminonaphthalene)) has been widely used as a fluorescent probe to monitor lipid membranes. Actually, it monitors the structure and polarity of the bilayer surface, where its fluorescent moiety is supposed to reside. The present paper discusses the high sensitivity of Laurdan fluorescence through the decomposition of its emission spectrum into two Gaussian bands, which correspond to emissions from two different excited states, one more solvent relaxed than the other. It will be shown that the analysis of the area fraction of each band is more sensitive to bilayer structural changes than the largely used parameter called Generalized Polarization, possibly because the latter does not completely separate the fluorescence emission from the two different excited states of Laurdan. Moreover, it will be shown that this decomposition should be done with the spectrum as a function of energy, and not wavelength. Due to the presence of the two emission bands in Laurdan spectrum, fluorescence anisotropy should be measured around 480 nm, to be able to monitor the fluorescence emission from one excited state only, the solvent relaxed state. Laurdan will be used to monitor the complex structure of the anionic phospholipid DMPG (dimyristoyl phosphatidylglycerol) at different ionic strengths, and the alterations caused on gel and fluid membranes due to the interaction of cationic peptides and cholesterol. Analyzing both the emission spectrum decomposition and anisotropy it was possible to distinguish between effects on the packing and on the hydration of the lipid membrane surface. It could be clearly detected that a more potent analog of the melanotropic hormone alpha-MSH (Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2)) was more effective in rigidifying the bilayer surface of fluid membranes than the hormone, though the hormone significantly decreases the bilayer surface hydration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exposure to ultraviolet (UV) radiation induces generation of reactive oxygen species, production of proinflammatory cytokines and melanocyte-stimulating hormone (MSH) as well as increase in tyrosinase activity. The potential photoprotective effects of Coccoloba uvifera extract (CUE) were evaluated in UV-stimulated melanocytes.Human epidermal melanocytes were used as an in vitro model to evaluate the effects of CUE on the production interleukin-1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF-alpha), and alpha-MSH under basal and UV-stimulated conditions. Antioxidant and anti-tyrosinase activities were also evaluated in membrane lipid peroxidation and mushroom tyrosinase assay, respectively.Coccoloba uvifera L. showed antioxidant and anti-tyrosinase activities and also inhibited the production of IL-1 alpha, TNF-alpha and alpha-MSH in melanocytes subjected to UV radiation (P < 0.01). Moreover, CUE inhibited the activity of tyrosine kinase in cell culture under basal and UV radiation conditions (P < 0.001), corroborating the findings of the mushroom tyrosinase assay.This study supports the photoprotective potential of CUE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)