968 resultados para Allergy.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of insects. IBH is a multifactorial disease with contribution of genetic and environmental factors. Candidate gene association analysis of IBH was performed in a group of 89 Icelandic horses all born in Iceland and imported to Europe. Horses were classified in IBH-affected and non-affected based on clinical signs and history of recurrent dermatitis, and on the results of an in vitro sulfidoleukotriene (sLT)-release assay with Culicoides nubeculosus and Simulium vittatum extract. Different genetic markers were tested for association with IBH by the Fisher's exact test. The effect of the major histocompatibility complex (MHC) gene region was studied by genotyping five microsatellites spanning the MHC region (COR112, COR113, COR114, UM011 and UMN-JH34-2), and exon 2 polymorphisms of the class II Eqca-DRA gene. Associations with Eqca-DRA and COR113 were identified (p < 0.05). In addition, a panel of 20 single nucleotide polymorphisms (SNPs) in 17 candidate allergy-related genes was tested. During the initial screen, no marker from the panel was significantly (p < 0.05) associated with IBH. Five SNPs associated with IBH at p < 0.10 were therefore used for analysis of combined genotypes. Out of them, SNPs located in the genes coding for the CD14 receptor (CD14), interleukin 23 receptor (IL23R), thymic stromal lymphopoietin (TSLP) and transforming growth factor beta 3 (TGFB3) molecules were associated with IBH as parts of complex genotypes. These results are supported by similar associations and by expression data from different horse populations and from human studies.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skin diseases with an allergic background such as atopic dermatitis, allergic contact dermatitis, and urticaria are very common. Moreover, diseases arising from a dysfunction of immune cells and/or their products often manifest with skin symptoms. This review aims to summarize recently published articles in order to highlight novel research findings, clinical trial results, and current guidelines on disease management. In recent years, an immense progress has been made in understanding the link between skin barrier dysfunction and allergic sensitization initiating the atopic march. In consequence, new strategies for treatment and prevention have been developed. Novel pathogenic insights, for example, into urticaria, angioedema, mastocytosis, led to the development of new therapeutic approaches and their implementation in daily patient care. By understanding distinct pathomechanisms, for example, the role of IL-1, novel entities such as autoinflammatory diseases have been described. Considerable effort has been made to improve and harmonize patient management as documented in several guidelines and position papers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Exposure to food allergens through a disrupted skin barrier has been recognized as a potential factor in the increasing prevalence of food allergy. OBJECTIVE We sought to test the immunologic mechanisms by which epicutaneous sensitization to food allergens predisposes to intestinal food allergy. METHODS Mice were epicutaneously sensitized with ovalbumin or peanut on an atopic dermatitis-like skin lesion, followed by intragastric antigen challenge. Antigen-specific serum IgE levels and T(H)2 cytokine responses were measured by ELISA. Expression of type 2 cytokines and mast cell proteases in the intestine were measured by using real-time PCR. Accumulation of basophils in the skin and mast cells in the intestine was examined by using flow cytometry. In vivo basophil depletion was achieved by using diphtheria toxin treatment of Baso-DTR mice. For cell-transfer studies, the basophil population was expanded in vivo by means of hydrodynamic tail vein injection of thymic stromal lymphopoietin (TSLP) cDNA plasmid. RESULTS Sensitization to food allergens through an atopic dermatitis-like skin lesion is associated with an expansion of TSLP-elicited basophils in the skin that promote antigen-specific T(H)2 cytokine responses, increased antigen-specific serum IgE levels, and accumulation of mast cells in the intestine, promoting the development of intestinal food allergy. Critically, disruption of TSLP responses or depletion of basophils reduced the susceptibility to intestinal food allergy, whereas transfer of TSLP-elicited basophils into intact skin promoted disease. CONCLUSION Epicutaneous sensitization on a disrupted skin barrier is associated with accumulation of TSLP-elicited basophils, which are necessary and sufficient to promote antigen-induced intestinal food allergy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eosinophil-associated diseases often present with life-threatening manifestations and/or chronic organ damage. Currently available therapeutic options are limited to a few drugs that often have to be prescribed on a lifelong basis to keep eosinophil counts under control. In the past 10 years, treatment options and outcomes in patients with clonal eosinophilic and other eosinophilic disorders have improved substantially. Several new targeted therapies have emerged, addressing different aspects of eosinophil expansion and inflammation. In this review, we discuss available and currently tested agents as well as new strategies and drug targets relevant to both primary and secondary eosinophilic diseases, including allergic disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunotherapy for type I allergies is well established and is regarded to be the most efficient treatment option besides allergen avoidance. As of today, different forms of allergen preparations are used in this regard, as well as different routes of application. Virus-like particles (VLPs) represent a potent vaccine platform with proven immunogenicity and clinical efficacy. The addition of toll-like receptor ligands and/or depot-forming adjuvants further enhances activation of innate as well as adaptive immune responses. CpG motifs represent intensively investigated and potent direct stimulators of plasmacytoid dendritic cells and B cells, while T cell responses are enhanced indirectly through increased antigen presentation and cytokine release. This article will focus on the function of VLPs loaded with DNA rich in nonmethylated CG motifs (CpGs) and the clinical experience gained in the treatment of allergic rhinitis, demonstrating clinical efficacy also if administered without allergens. Several published studies have demonstrated a beneficial impact on allergic symptoms by treatment with CpG-loaded VLPs. Subcutaneous injection of VLPs loaded with CpGs was tested with or without the adjuvant alum in the presence or absence of an allergen. The results encourage further investigation of VLPs and CpG motifs in immunotherapy, either as a stand-alone product or as adjuvants for allergen-specific immunotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food allergies are a global health issue with increasing prevalence. Allergic reactions can range from mild local symptoms to severe anaphylactic reactions. Significant progress has been made in diagnostic tools such as component-resolved diagnostics and its impact on risk stratification as well as in therapeutic approaches including biologicals. However, a cure for food allergy has not yet been achieved and patients and their families are forced to alter eating habits and social engagements, impacting their quality of life. New technologies and improved in vitro and in vivo models will advance our knowledge of the pathogenesis of food allergies and multicenter-multinational cohort studies will elucidate interactions between genetic background, lifestyle, and environmental factors. This review focuses on new insights and developments in the field of food allergy and summarizes recently published articles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allergic reactions to drugs are a serious public health concern. In 2013, the Division of Allergy, Immunology, and Transplantation of the National Institute of Allergy and Infectious Diseases sponsored a workshop on drug allergy. International experts in the field of drug allergy with backgrounds in allergy, immunology, infectious diseases, dermatology, clinical pharmacology, and pharmacogenomics discussed the current state of drug allergy research. These experts were joined by representatives from several National Institutes of Health institutes and the US Food and Drug Administration. The participants identified important advances that make new research directions feasible and made suggestions for research priorities and for development of infrastructure to advance our knowledge of the mechanisms, diagnosis, management, and prevention of drug allergy. The workshop summary and recommendations are presented herein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very few studies have described MUP-1 concentrations and measured prevalence of Laboratory Animal Allergy (LAA) at such a diverse institution as the private medical school (MS) that is the focus of this study. Air sampling was performed in three dissimilar animal research facilities at MS and quantitated using a commercially available ELISA. Descriptive data was obtained from an anonymous laboratory animal allergy survey given to both animal facility employees and the researchers who utilize these facilities alike. Logistic regression analysis was then implemented to investigate specific factors that may be predictive of developing LAA as well as factors influencing the reporting of LAA symptoms to the occupational health program. Concentrations of MUP-1 detected ranged from below detectable levels (BDL) to a peak of 22.64 ng/m3 . Overall, 68 employees with symptoms claimed they improved while away from work and only 25 employees reported their symptoms to occupational health. Being Vietnamese, a smoker, not wearing a mask, and working in any facility longer than one year were all significant predictors of having LAA symptoms. This study suggests a LAA monitoring system that relies on self-reporting can be inadequate in estimating LAA problems. In addition, efforts need to be made to target training and educational materials for non-native English speaking employees to overcome language and cultural barriers and address their specific needs. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pru p 3 has been suggested to be the primary sensitizing allergen in patients with peanut allergy in the Mediterranean area. We aimed to confirm this hypothesis, studying 79 subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over 30 wheat allergens have been associated to baker’s asthma and much of them have been also implied in food allergy. Few of them have rendered as major allergens. Tri a 14, wheat LTP, has been associated to baker’s asthma as major allergen in patients that can consume peach and wheat derived foodstuffs. In Spanish baker’s asthma patients, 60% showed positive response to Tri a 14 and 45% to Pru p 3. However, the cross-reactivity between peach and wheat has been unusual in allergic population (1,8). Moreover, wheat allergy is not so often as should be attending to the high consume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La prevalencia de las alergias está aumentando desde mediados del siglo XX, y se estima que actualmente afectan a alrededor del 2-8 % de la población, pero las causas de este aumento aún no están claras. Encontrar el origen del mecanismo por el cual una proteína inofensiva se convierte en capaz de inducir una respuesta alérgica es de vital importancia para prevenir y tratar estas enfermedades. Aunque la caracterización de alérgenos relevantes ha ayudado a mejorar el manejo clínico y a aclarar los mecanismos básicos de las reacciones alérgicas, todavía queda un largo camino para establecer el origen de la alergenicidad y reactividad cruzada. El objetivo de esta tesis ha sido caracterizar las bases moleculares de la alergenicidad tomando como modelo dos familias de panalergenos (proteínas de transferencia de lípidos –LTPs- y taumatinas –TLPs-) y estudiando los mecanismos que median la sensibilización y la reactividad cruzada para mejorar tanto el diagnóstico como el tratamiento de la alergia. Para ello, se llevaron a cabo dos estrategias: estudiar la reactividad cruzada de miembros de familias de panalérgenos; y estudiar moléculas-co-adyuvantes que pudieran favorecer la capacidad alergénica de dichas proteínas. Para estudiar la reactividad cruzada entre miembros de la misma familia de proteínas, se seleccionaron LTPs y TLPs, descritas como alergenos, tomando como modelo la alergia a frutas. Por otra parte, se estudiaron los perfiles de sensibilización a alérgenos de trigo relacionados con el asma del panadero, la enfermedad ocupacional más relevante de origen alérgico. Estos estudios se llevaron a cabo estandarizando ensayos tipo microarrays con alérgenos y analizando los resultados por la teoría de grafos. En relación al estudiar moléculas-co-adyuvantes que pudieran favorecer la capacidad alergénica de dichas proteínas, se llevaron a cabo estudios sobre la interacción de los alérgenos alimentarios con células del sistema inmune humano y murino y el epitelio de las mucosas, analizando la importancia de moléculas co-transportadas con los alérgenos en el desarrollo de una respuesta Th2. Para ello, Pru p 3(LTP y alérgeno principal del melocotón) se selección como modelo para llevarlo a cabo. Por otra parte, se analizó el papel de moléculas activadoras del sistema inmune producidas por patógenos en la inducción de alergias alimentarias seleccionando el modelo kiwi-alternaria, y el papel de Alt a 1, alérgeno mayor de dicho hongo, en la sensibilización a Act d 2, alérgeno mayor de kiwi. En resumen, el presente trabajo presenta una investigación innovadora aportando resultados de gran utilidad tanto para la mejora del diagnóstico como para nuevas investigaciones sobre la alergia y el esclarecimiento final de los mecanismos que caracterizan esta enfermedad. ABSTRACT Allergies are increasing their prevalence from mid twentieth century, and they are currently estimated to affect around 2-8% of the population but the underlying causes of this increase remain still elusive. The understanding of the mechanism by which a harmless protein becomes capable of inducing an allergic response provides us the basis to prevent and treat these diseases. Although the characterization of relevant allergens has led to improved clinical management and has helped to clarify the basic mechanisms of allergic reactions, it seems justified in aspiring to molecularly dissecting these allergens to establish the structural basis of their allergenicity and cross-reactivity. The aim of this thesis was to characterize the molecular basis of the allergenicity of model proteins belonging to different families (Lipid Transfer Proteins –LTPs-, and Thaumatin-like Proteins –TLPs-) in order to identify mechanisms that mediate sensitization and cross reactivity for developing new strategies in the management of allergy, both diagnosis and treatment, in the near future. With this purpose, two strategies have been conducted: studies of cross-reactivity among panallergen families and molecular studies of the contribution of cofactors in the induction of the allergic response by these panallergens. Following the first strategy, we studied the cross-reactivity among members of two plant panallergens (LTPs , Lipid Transfer Proteins , and TLPs , Thaumatin-like Proteins) using the peach allergy as a model. Similarly, we characterized the sensitization profiles to wheat allergens in baker's asthma development, the most relevant occupational disease. These studies were performed using allergen microarrays and the graph theory for analyzing the results. Regarding the second approach, we analyzed the interaction of plant allergens with immune and epithelial cells. To perform these studies , we examined the importance of ligands and co-transported molecules of plant allergens in the development of Th2 responses. To this end, Pru p 3, nsLTP (non-specific Lipid Transfer Protein) and peach major allergen, was selected as a model to investigate its interaction with cells of the human and murine immune systems as well as with the intestinal epithelium and the contribution of its ligand in inducing an allergic response was studied. Moreover, we analyzed the role of pathogen associated molecules in the induction of food allergy. For that, we selected the kiwi- alternaria system as a model and the role of Alt a 1 , major allergen of the fungus, in the development of Act d 2-sensitization was studied. In summary, this work presents an innovative research providing useful results for improving diagnosis and leading to further research on allergy and the final clarification of the mechanisms that characterize this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Since intestinal absorption of food protein can trigger an allergic reaction, the effect of plant food allergen on intestinal epithelial cell permeability and its ability to cross the epithelial monolayer was evaluated. Objective To study the interaction of Pru p 3 with intestinal epithelium, its natural entrance, analyzing transport kinetics and cellular responses that trigger. Methods This was achieved using Pru p 3, the peach LTP, as a model. Enterocytic monolayers were established by culturing Caco 2 cells, as a model of enterocytes, on permeable supports that separate the apical and basal compartments. Pru p 3 was added to the apical compartment, the transepithelial resistance (TEER) was measured, and the transport was quantified. Results The peach allergen that crossed the cell monolayer was detected in the cell fraction and in the basal medium by immunodetection with specific antibodies and the quantity was measured by ELISA assay. Pru p 3 was able to cross the monolayer without disturbing the integrity of the tight junctions. This transport was significantly higher than that of a non-allergenic peach LTP, LTP1, and occurred via lipid raft pathway. The incubation of Caco 2 cells with Pru p 3 and LTP1 produced the expression of epithelial-specific cytokines TSLP, IL33 and IL25. Conclusion These results suggest that Pru p 3 was able to cross the cell monolayer by the transcellular route and then induce the production of Th2 cytokines. The results of the present study represent a step towards clarifying the importance of Pru p 3 as a sensitizer. Clinical relevance The capacity of food allergens to cross the intestinal monolayer could explain their high allergenic capacity and its fast diffusion through the body associating to severe symptoms.