955 resultados para Algal bloom


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In spring, Arctic coastal fast ice is inhabited by high densities of sea ice algae and, among other fauna, juveniles of benthic polychaetes. This paper investigates the hypothesis that growth rates of juveniles of the common sympagic polychaete, Scolelepis squamata (Polychaeta: Spionidae), are significantly faster at sea ice algal bloom concentrations compared to concurrent phytoplankton concentrations. Juvenile S. squamata from fast ice off Barrow, Alaska, were fed with different algal concentrations at 0 and 5 °C, simulating ambient high sea ice algal concentrations, concurrent low phytoplankton concentrations, and an intermediate concentration. Growth rates, calculated using a simple linear regression equation, were significantly higher (up to 115 times) at the highest algal concentration compared to the lowest. At the highest algal concentration, juveniles grew faster at 5 °C compared to those feeding at 0 °C with a Q10 of 2.0. We conclude that highly concentrated sea ice algae can sustain faster growth rates of polychaete juveniles compared to the less dense spring phytoplankton concentrations. The earlier melt of Arctic sea ice predicted with climate change might cause a mismatch between occurrence of polychaete juveniles and food availability in the near future. Our data indicate that this reduction in food availability might counteract any faster growth of a pelagic juvenile stage based on forecasted increased water temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pack ice around Svalbard was sampled during the expedition ARK XIX/1 of RV "Polarstern" (March-April 2003) in order to determine environmental conditions, species composition and abundances of sea-ice algae and heterotrophic protists during late winter. As compared to other seasons, species diversity of algae (total 40 taxa) was not low, but abundances (5,000-448,000 cells/l) were lower by one to two orders of magnitude. Layers of high algal abundances were observed both at the bottom and in the ice interior. Inorganic nutrient concentrations (NO2, NO3, PO4, Si(OH)4) within the ice were mostly higher than during other seasons, and enriched compared to seawater by enrichment indices of 1.6-24.6 (corrected for losses through the desalination process). Thus, the survival of algae in Arctic pack ice was not limited by nutrients at the beginning of the productive season. Based on less-detailed physical data, light was considered as the most probable factor controlling the onset of the spring ice-algal bloom in the lower part of the ice, while low temperatures and salinities inhibit algal growth in the upper part of the ice at the end of the winter. Incorporation of ice algae probably took place during the entire freezing period. Possible overwintering strategies during the dark period, such as facultative heterotrophy, energy reserves, and resting spores are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anthropogenic CO2 is progressively acidifying the ocean, but the responses of harmful algal bloom species that produce toxins that can bioaccumulate remain virtually unknown. The neurotoxin domoic acid is produced by the globally-distributed diatom genus Pseudo-nitzschia. This toxin is responsible for amnesic shellfish poisoning, which can result in illness or death in humans and regularly causes mass mortalities of marine mammals and birds. Domoic acid production by Pseudo-nitzschia cells is known to be regulated by nutrient availability, but potential interactions with increasing seawater CO2 concentrations are poorly understood. Here we present experiments measuring domoic acid production by acclimatized cultures of Pseudo-nitzschia fraudulenta that demonstrate a strong synergism between projected future CO2 levels (765 ppm) and silicate-limited growth, which greatly increases cellular toxicity relative to growth under modern atmospheric (360 ppm) or pre-industrial (200 ppm) CO2 conditions. Cellular Si:C ratios decrease with increasing CO2, in a trend opposite to that seen for domoic acid production. The coastal California upwelling system where this species was isolated currently exhibits rapidly increasing levels of anthropogenic acidification, as well as widespread episodic silicate limitation of diatom growth. Our results suggest that the current ecosystem and human health impacts of toxic Pseudo-nitzschia blooms could be greatly exacerbated by future ocean acidification and 'carbon fertilization' of the coastal ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the effects of pH on movement behaviors of the harmful algal bloom causing raphidophyte Heterosigma akashiwo. Motility parameters from >8000 swimming tracks of individual cells were quantified using 3D digital video analysis over a 6-h period in 3 pH treatments reflecting marine carbonate chemistry during the pre-industrial era, currently, and the year 2100. Movement behaviors were investigated in two different acclimation-to-target-pH conditions: instantaneous exposure and acclimation of cells for at least 11 generations. There was no negative impairment of cell motility when exposed to elevated PCO2 (i.e., low pH) conditions but there were significant behavioral responses. Irrespective of acclimation condition, lower pH significantly increased downward velocity and frequency of downward swimming cells (p < 0.001). Rapid exposure to lower pH resulted in 9% faster downward vertical velocity and up to 19% more cells swimming downwards (p < 0.001). Compared to pH-shock experiments, pre-acclimation of cells to target pH resulted in ~30% faster swimming speed and up to 46% faster downward velocities (all p < 0.001). The effect of year 2100 PCO2 levels on population diffusivity in pre-acclimated cultures was >2-fold greater than in pH-shock treatments (2.2 × 105 µm**2/s vs. 8.4 × 104 µm**2/s). Predictions from an advection-diffusion model, suggest that as PCO2 increased the fraction of the population aggregated at the surface declined, and moved deeper in the water column. Enhanced downward swimming of H. akashiwo at low pH suggests that these behavioral responses to elevated PCO2 could reduce the likelihood of dense surface slick formation of H. akashiwo through reductions in light exposure or growth independent surface aggregations. We hypothesize that the HAB alga's response to higher PCO2 may exploit the signaling function of high PCO2 as indicative of net heterotrophy in the system, thus indicative of high predation rates or depletion of nutrients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phaeocystis globosa (Prymnesiophyceae) is an ecologically dominating phytoplankton species in many areas around the world. It plays an important role in both the global sulfur and carbon cycles, by the production of dimethylsulfide (DMS) and the drawdown of inorganic carbon. Phaeocystis globosa has a polymorphic life cycle and is considered to be a harmful algal bloom (HAB) forming species. All these aspects make this an interesting species to study the effects of increasing carbon dioxide (CO2) concentrations, due to anthropogenic carbon emissions. Here, the combined effects of three different dissolved carbon dioxide concentrations (CO2(aq)) (low: 4 µmol/kg, intermediate: 6-10 µmol/kg and high CO2(aq): 21-24 µmol/kg) and two different light intensities (low light, suboptimal: 80 µmol photons/m**2/s and high light, light saturated: 240 µmol photons/m**2/s) are reported. The experiments demonstrated that the specific growth rate of P. globosa in the high light cultures decreased with increasing CO2(aq) from 1.4 to 1.1 /d in the low and high CO2 cultures, respectively. Concurrently, the photosynthetic efficiency (Fv/Fm) increased with increasing CO2(aq) from 0.56 to 0.66. The different light conditions affected photosynthetic efficiency and cellular chlorophyll a concentrations, both of which were lower in the high light cultures as compared to the low light cultures. These results suggest that in future inorganic carbon enriched oceans, P. globosa will become less competitive and feedback mechanisms to global change may decrease in strength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, modernized shipborne procedures are presented to collect and process above-water radiometry for remote sensing applications. A setup of five radiometers and a bidirectional camera system, which provides panoramic sea surface and sky images, is proposed for the collection of high-resolution radiometric quantities. Images from the camera system can be used to determine sky state and potential glint, whitecaps, or foam contamination. A peak in the observed remote sensing reflectance RRS spectra between 750-780 nm was typically found in spectra with relatively high surface reflected glint (SRG), which suggests this waveband could be a useful SRG indicator. Simplified steps for computing uncertainties in SRG corrected RRS are proposed and discussed. The potential of utilizing "unweighted multimodel averaging," which is the average of four or more common SRG correction models, is examined to determine the best approximation RRS. This best approximation RRS provides an estimate of RRS based on various SRG correction models established using radiative transfer simulations and field investigations. Applying the average RRS provides a measure of the inherent uncertainties or biases that result from a user subjectively choosing any one SRG correction model. Comparisons between inherent and apparent optical property derived observations were used to assess the robustness of the SRG multimodel averaging ap- proach. Correlations among the standard SRG models were completed to determine the degree of association or similarities between the SRG models. Results suggest that the choice of glint models strongly affects derived RRS values and can also influence the blue to green band ratios used for modeling biogeochemical parameters such as for chlorophyll a. The objective here is to present a uniform and traceable methodology for determining ship- borne RRS measurements and its associated errors due to glint correction and to ensure the direct comparability of these measurements in future investigations. We encourage the ocean color community to publish radiometric field measurements with matching and complete metadata in open access repositories.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The copepod Calanus glacialis plays a key role in the lipid-based energy flux in Arctic shelf seas. By utilizing both ice algae and phytoplankton, this species is able to extend its growth season considerably in these seasonally ice-covered seas. This study investigated the impacts of the variability in timing and extent of the ice algal bloom on the reproduction and population success of C. glacialis. The vertical distribution, reproduction, amount of storage lipids, stable isotopes, fatty acid and fatty alcohol composition of C. glacialis were assessed during the Circumpolar Flaw Lead System Study. Data were collected in the Amundsen Gulf, south-eastern Beaufort Sea, from January to July 2008 with the core-sampling from March to April. The reduction in sea ice thickness and coverage observed in the Amundsen Gulf in 2007 and 2008 affected the life strategy and reproduction of C. glacialis. Developmental stages CIII and CIV dominated the overwintering population, which resulted in the presence of very few CV and females during spring 2008. Spawning began at the peak of the ice algal bloom that preceded the precocious May ice break-up. Although the main recruitment may have occurred later in the season, low abundance of females combined with a potential mismatch between egg production/development to the first feeding stage and phytoplankton bloom resulted in low recruitment of C. glacialis in the early summer of 2008.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since 2002, the usually uncommon endemic filamentous brown alga Hincksia sordida (Harvey) Silva (Ectocarpales, Phaeophyta) has formed nuisance blooms annually during spring/early summer at Main Beach, Noosa on the subtropical east Australian coast. The Hincksia bloom coincides with the normally intensive recreational use of the popular bathing beach by the local population and tourists. The alga forms dense accumulations in the surf zone at Main Beach, giving the seawater a distinct brown coloration and deterring swimmers from entering the water. Decomposing algae stranded by receding tides emit a nauseating sulphurous stench which hangs over the beach. The stranded algal biomass is removed from the beach by bulldozers. During blooms, the usually crowded Main Beach is deserted, bathers preferring to use the many unaffected beaches on the Sunshine Coast to the south of Main Beach. The bloom worsens with north-easterly winds and is cleared from Noosa by south easterly winds, observations which have prompted the untenable proposal by local authorities that the bloom is forming offshore of Fraser Island in the South Pacific Ocean. The Noosa River estuarine system/Laguna Bay is the more probable source of the bloom and the nutrient inputs into this system must be substantial to generate the high bloom biomass. Current mitigation procedures of removing the blooming alga off the beach with bulldozers treat the symptom, not the cause and are proving ineffective. Environmental management must be based on science and the Noosa bloom would benefit greatly from the accurate ecological data on which to base management options. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The catastrophic event of red tide has happened in the Strait of Hormuz, the Persian Gulf and Gulf of Oman from late summer 2008 to spring 2009. With its devastating effects, the phenomenon shocked all the countries located in the margin of the Persian Gulf and the Gulf of Oman and caused considerable losses to fishery industries, tourism, and tourist and trade economy of the region. In the maritime cruise carried out by the Persian Gulf and Gulf of Oman Ecological Research Institute, field data, including temperature, salinity, chlorophyll-a, dissolved oxygen and algal density were obtained for this research. Satellite information was received from MODIS and MERIS and SeaWiFS sensors. Temperature and surface chlorophyll images were obtained and compared with the field data and data of PROBE model. The results obtained from the present research indicated that with the occurrence of harmful algal blooms (HAB), the Chlorophyll-a and the dissolved oxygen contents increased in the surface water. Maximum algal density was seen in the northern coasts of the Strait of Hormuz. Less concentration of algal density was detected in deep and surface offshore water. Our results show that the occurred algal bloom was the result of seawater temperature drop, water circulation and the adverse environmental pollutions caused by industrial and urban sewages entering the coastal waters in this region of the Persian Gulf ,This red tide phenomenon was started in the Strait of Hormuz and eventually covered about 140,000 km2 of the Persian Gulf and total area of Strait of Hormuz and it survived for 10 months which is a record amongst the occurred algal blooms across the world. Temperature and chlorophyll satellite images were proportionate to the measured values obtained by the field method. This indicates that satellite measurements have acceptable precisions and they can be used in sea monitoring and modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) are truly global marine phenomena of increasing significance. Some HAB occurrences are different to observe because of their high spatial and temporal variability and their advection, once formed, by surface currents. A serious HAB occurred in the Bohai Sea during autumn 1998, causing the largest fisheries economic loss. The present study analyzes the formation, distribution, and advection of HAB using satellite SeaWiFS ocean color data and other oceanographic data. The results show that the bloom originated in the western coastal waters of the Bohai Sea in early September, and developed southeastward when sea surface temperature (SST) increased to 25-26 °C. The bloom with a high Chl-a concentration (6.5 mg m-3) in center portion covered an area of 60 × 65 km2. At the end of September, the bloom decayed when SST decreased to 22-23 °C. The HAB may have been initiated by a combination of the river discharge nutrients in the west coastal waters and the increase of SST; afterwards it may have been transported eastward by the local circulation that was enhanced by northwesterly winds in late September and early October.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eutrophication favours harmful algal blooms worldwide. The blooms cause toxic outbreaks and deteriorated recreational and aesthetic values, causing both economic loss and illness or death of humans and animals. The Baltic Sea is the world s only large brackish water habitat with recurrent blooms of toxic cyanobacteria capable of biological fixation of atmospheric nitrogen gas. Phosphorus is assumed to be the main limiting factor, along with temperature and light, for the growth of these cyanobacteria. This thesis evaluated the role of phosphorus nutrition as a regulating factor for the occurrence of nitrogen-fixing cyanobacteria blooms in the Baltic Sea, utilising experimental laboratory and field studies and surveys on varying spatial scales. Cellular phosphorus sources were found to be able to support substantial growth of the two main bloom forming species Aphanizomenon sp. and Nodularia spumigena. However, N. spumigena growth seemed independent of phosphorus source, whereas, Aphanizomenon sp. grew best in a phosphate enriched environment. Apparent discrepancies with field observations and experiments are explained by the typical seasonal temperature dependent development of Aphanizomenon sp. and N. spumigena biomass allowing the two species to store ambient pre-bloom excess phosphorus in different ways. Field experiments revealed natural cyanobacteria bloom communities to be predominantly phosphorus deficient during blooms. Phosphate additions were found to increase the accumulation of phosphorus relatively most in the planktonic size fraction dominated by the nitrogen-fixing cyanobacteria. Aphanizomenon sp. responded to phosphate additions whereas the phosphorus nutritive status of N. spumigena seemed independent of phosphate addition. The seasonal development of phosphorus deficiency is different for the two species with N. spumigena showing indications of phosphorus deficiency during a longer time period in the open sea. Coastal upwelling introduces phosphorus to the surface layer during nutrient deficient conditions in summer. The species-specific ability of Aphanizomenon sp. and N. spumigena to utilise phosphate enrichment of the surface layer caused by coastal upwelling was clarified. Typical bloom time vertical distributions of biomass maxima were found to render N. spumigena more susceptible to advection by surface currents caused by coastal upwellings. Aphanizomenon sp. populations residing in the seasonal thermocline were observed to be able to utilise the phosphate enrichment and a bloom was produced with a two to three week time lag subsequent to the relaxation of upwelling. Consistent high concentrations of dissolved inorganic phosphorus, caused by persistent internal loading of phosphorus, was found to be the main source of phosphorus for large-scale pelagic blooms. External loads were estimated to contribute with only a fraction of available phosphorus for open sea blooms. Remineralization of organic forms of phosphorus along with vertical mixing to the permanent halocline during winter set the level of available phosphorus for the next growth season. Events such as upwelling are important in replenishing phosphate concentrations during the nutrient deplete growth season. Autecological characteristics of the two main bloom forming species favour Aphanizomenon sp. populations in utilising the abundant excess phosphate concentrations and phosphate pulses mediated through upwelling. Whilst, N. spumigena displays predominant phosphorus limited growth mode and relies on more scarce cellular phosphorus stores and presumably dissolved organic phosphorus compounds for growth. The Baltic Sea is hypothesised to be in an inhibited state of recovery due to the extensive historical external nutrient loading, extensive internal phosphorus loading and the substantial nitrogen load caused by cyanobacteria nitrogen fixation. This state of the sea is characterised as a vicious circle .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blue-green algae (cyanobacteria) have had a profound and unparalled impact on the aquatic environment because of the phenomenon of bloom formation. In many countries, water management is threatened with extensive and persistent noxious blooms of blue-green algae in surface and near-surface mesotrophic and eutrophic waters. In view of this, ecological and physiological factors responsible for blue-green algal dominance are discussed. The implications of cyanobacterial blooms are highlighted and recommendations made to combat this menace

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.