992 resultados para Air temperature


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Use of high albedo materials reduces the amount of solar radiation absorbed through building envelops and urban structures and thus keeping their surfaces cooler. The cooling energy savings by using high albedo materials have been well documented. Higher surface temperatures add to increasing the ambient temperature as convection intensity is higher. Such temperature increase has significant impacts on the air conditioning energy utilization in hot climates. This study makes use of a parametric approach by varying the temperature of building facades to represent commonly used materials and hence analyzing its effect on the air temperature through a series of CFD (Computational Fluid Dynamics) simulations. A part of the existing CBD (Central Business District) area of Singapore was selected for the study. Series of CFD simulations have been carried out using the software CFX-5.6. Wind tunnel experiments were also conducted for validation. It was found that at low wind speeds, the effect of materials on the air temperature was significant and the temperature at the middle of a narrow canyon increased up to 2.52°C with the façade material having lowest albedo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Continuous measurement of internal and external environmental parameters is critical to our understanding of how buildings perform. Yet, the quantity and variety of time-series data can be quite overwhelming as well as onerous to decipher and present. In addition to this, is the fact that several of the collected data are useless in their raw format unless processed through algorithms to obtain identifiable and meaningful results.
These circumstances challenge the conventional way we present accumulated data and their processed outputs in order to get a better understanding of how and why the environmental performance occurred. It would be ideal if all of the collected and processed data could be presented in a simultaneous, yet, useful format. It is exactly the intention of this paper to suggest and present such a process as well as its format.
An example case study is provided where several parameters (air velocity, mean radiant temperature, humidity and air temperature) are measured periodically to calculate a time-series of internal comfort performance. However, external conditions of solar radiation and solar position as well as air temperature drive the interior building surface temperatures and help to explain the end result of internal comfort.
A program has been written to present the various sets of data graphically, in an integrated manner, animated as a function of time. The animation shows solar position, a cursor scanning weather data, the changing infra-red image and a representation of the resulting internal comfort performance throughout the
monitored period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The city and the urban environment became extremely important in the daily lives of the increasing number of urban populations across the world. Urban research acknowledges that planning urban places should be responsive to the diversity of population. The aim of this paper is to analyse the results of thermal comfort study in the outdoor urban places. The location has been monitored regarding standard comfort variables: air temperature, humidity, wind speed, and globe temperature. The quantitative assessment of comfort conditions was combined with a questionnaire of pedestrians’ thermal comfort perception. In this paper, the analysis of observed thermal sensation with regard to gender and cultural background concerning the sensitivity of different groups to heat and cold is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An Australian research facility, conducted a study on several different school classrooms in regards to their thermal comfort, CO2 levels, air temperature stratification and ventilation rates in a selection of Victorian (Melbourne, Australia) schools during a winter season. A brief literature review reveals similar IAQ problems elsewhere (outside Australia) and suggests several HVAC concepts that provide potential solutions. Our intention is to highlight particular IAQ discrepancies in existing school classroom design resulting from these case study measurements, suggesting construction and mechanical operational conditioning improvements.In particular this research confirms the urgency and necessity of addressing IAQ problems in schools, world wide. Our results of the Australian school classroom measurements are similar to other parts of the world, indicating that CO2 levels, ventilation rates and air temperatures are non-compliant with the standards.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sea turtles show temperature dependent sex determination. Using an empirical relationship between sand and air temperature, we reconstructed the nest temperatures since 1855 at Ascension Island, a major green turtle (Chelonia mydas) rookery. Our results show that inter-beach thermal variations, previously ascribed to the albedo of the sand, which varies hugely from one beach to another, have persisted for the last century. Reconstructed nest temperatures varied by only 0.5 °C on individual beaches over the course of the nesting season, while the temperature difference between two key nesting beaches was always around 3 °C. Hence inter-beach thermal variations are the main factor causing a large range of incubation temperatures at this rookery. There was a general warming trend for nests, with a mean increase in reconstructed nest temperatures for different months of between 0.36 and 0.49 °C for the last 100 years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On 2 of the major nesting beaches used by green turtles Chelonia mydas on Ascension Island, we measured the sand temperature at nest depths throughout the year. For both beaches, the sand temperature was strongly correlated (r2 >= 0.94) with air temperature. We therefore used past records of air temperature to reconstruct sand temperatures on the different beaches throughout the nesting season between 1985 and 1998. This analysis showed that inter-annual differences in sand temperature were small and, while there were consistent thermal changes during the nesting season, over the 14 yr there was little overlap in the temperatures on the 2 beaches, with one being 2.6°C warmer, on average, than the other. This work suggests that inter-beach thermal variation is the major mechanism by which a range of incubation temperatures are realised on Ascension Island and hence is likely to facilitate the production of hatchlings of both sexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Energy crisis is one of the major obstacles for human development. There are on-going researches to overcome this for a sustainable environment and economy. Passive air cooling system of earth pipe cooling is seen as a viable energy efficient technology for hot and humid subtropical climates. It can be an attractive economical alternative to conventional cooling since there are no compressors or any habitual mechanical unit. It utilizes earth’s near constant underground temperature to cool air for residential, agricultural or industrial uses. This paper reports the thermal performance of earth pipe cooling technology for a hot and humid subtropical climatic zone in Queensland, Australia. A series of pipes buried underground were used in order to increase the cooling performance of the system. To measure the thermal performance, a thermal model was developed for the earth pipe cooling system and simulated using ANSYS Fluent. Data were collected from two modelled rooms built from shipping containers and installed at Central Queensland University, Rockhampton, Australia. The impact of air temperature and velocity on room cooling performance has also been assessed. A significant temperature reduction is seen in this study, which will save energy cost for thermal cooling in buildings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Remote communities in the high altitude areas of Nepal suffer both chronic and acute malnutrition. This is due to a shortage of arable land and a harsh climate. For seven months of the year, the harvesting of fresh vegetables is almost impossible. Greenhouse technology, if appropriate for the location and its community, can extend the growing season considerably. Experience in the Ladakh region of India indicates that year-round cropping is possible in greenhouses in cold mountainous areas. A simple 50-m2 greenhouse has been constructed in Simikot, the main town of Humla, northwest Nepal. This paper describes the evaluation of the thermal performance of that greenhouse. Both measurement and simulation were used in the evaluation. Measurements during the winter of 2006-7 indicate that the existing design is capable of producing adequate growing conditions for some vegetable crops, but that improvements are required if crops like tomatoes are to be grown successfully. Options to improve the thermal performance of the greenhouse have been investigated by simulation. Improvements to the building envelope such as wall insulation, double-glazing and using a thermal screen were simulated with a validated TRNSYS model. The impact of the addition of nighttime heat from internal passive solar water collectors was also predicted. The simulations indicate that the passive solar water collectors would raise the average greenhouse air temperature by 2.5°C and the overnight air temperature would increase by 4.0°C. When used in combination, overnight temperatures are predicted to by almost 7°C higher.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

 Thermal comfort models, as we know them today, have been available since the early 1970’s and have been applied to assess the conditioning of our buildings. What we have is a comfort value of an interior environment at a particular location as a result of several measured parameters. What we don’t often consider is how the building contributes to this resulting thermal environment and how occupants respond to its possible changes. The following research considers the climatic and comfort findings from 15 fully air conditioned office buildings between Brisbane and Melbourne Australia during brief seasonal periods of measurement. Initially, each office building
was considered as its own individual project; however the grouping of the results has led to some interesting observations:
Regardless of building type or whether there is a narrow controlled comfort band,
there can be a significant variation in the clothing level of occupants.
There is a greater exterior to interior air temperature correlation than might be expected among fully air-conditioned buildings. The diurnal ranges of interior temperatures (over 24 hours) may be far greater than anticipated. It is realised that fully conditioned buildings are far more variable than perhaps realised and that occupant comfort may relate more to user interaction (CLO value), building construction type (weight) and envelope air tightness. As a result, this investigation raises perhaps more questions than answers as to how we assess thermal comfort in
buildings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Air temperature, pressure and humidity are environmental factors that affect air density and therefore the relationship between a cyclist’s power output and their velocity. These environmental factors are changeable and are routinely quite different at elite cycling competitions conducted around the world, which means that they have a variable effect on performance in timed events. The present work describes a method of calculating the effect of these environmental factors on timed cycling events and illustrates the magnitude and significance of these effects in a case study. Formulas are provided to allow the calculation of the effect of environmental conditions on performance in a time trial cycling event. The effect of environmental factors on time trial performance can be in the order of 1.5%, which is significant given that the margins between ranked performances is often less than this. Environmental factors may enhance or hinder performance depending upon the conditions and the comparison conditions. To permit the fair comparison of performances conducted in different environmental conditions, it is recommended that performance times are corrected to the time that would be achieved in standard environmental conditions, such as 20 oC, 760 mmHg (1013.25 hPa) and 50% RH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water quality monitoring and prediction are critical for ensuring the sustainability of water resources which are essential for social security, especially for countries with limited land like Singapore. For example, the Singapore government identified water as a new growth sector and committed in 2006 to invest S$ 330 million over the following five years for water research and development [1]. To investigate the water quality evolution numerically, some key water quality parameters at several discrete locations in the reservoir (e.g., dissolved oxygen, chlorophyll, and temperature) and some environmental parameters (e.g., the wind distribution above water surface, air temperature and precipitation) are used as inputs to a three-dimensional hydrodynamics-ecological model, Estuary Lake and Coastal Ocean Model - Computational Aquatic Ecosystem Dynamics Model (ELCOM-CAEDYM) [2]. Based on the calculation in the model, we can obtain the distribution of water quality in the whole reservoir. We can also study the effect of different environmental parameters on the water quality evolution, and finally predict the water quality of the reservoir with a time step of 30 seconds. In this demo, we introduce our data collection system which enables water quality studies with real-time sensor data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radar observations on the altitude of bird migration and altitudinal profiles of meteorological conditions over the Sahara desert are presented for the autumn migratory period. Migratory birds fly at an average altitude of 1016 m (a.s.l.) during the day and 571 m during the night. Weather data served to calculate flight range using two models: an energy model (EM) and an energy-and-water model (EWM). The EM assumes that fuel supply limits flight range whereas the EWM assumes that both fuel and water may limit flight range. Flight ranges estimated with the EM were generally longer than those with the EWM. This indicates that trans-Sahara migrants might have more problems balancing their water than their energy budget. However, if we assume fuel stores to consist of 70% instead of 100% fat (the remainder consisting of 9% protein and 21% water), predicted flight ranges of the EM and EWM largely overlap. Increased oxygen extraction, reduced flight costs, reduced exhaled air temperature, reduced cutaneous water loss and increased tolerance to water loss are potential physiological adaptations that would improve the water budget in migrants. Both the EM and EWM predict optimal flight altitudes in agreement with radar observations in autumn. Optimal flight altitudes are differently predicted by the EM and EWM for nocturnal spring migration. During spring, the EWM predicts moderately higher and the EM substantially higher flight altitudes than during autumn. EWM predictions are therefore in better agreement with radar observations on flight altitude of migrants over the Negev desert in spring than EM predictions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Séries de dados de velocidades máximas anuais do vento, classificadas segundo o tipo de tormenta (ventos EPS ou TS) e a direção (octantes), são utilizadas para o ajuste de um modelo baseado em regressão linear múltipla, permitindo a estimativa dos ventos extremos no interior da região definida pelas estações meteorológicas disponíveis. A correlação entre as velocidades do vento e a temperatura do ar durante tormentas também é investigada, bem como o comportamento estatístico das temperaturas durante ventos fortes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soybeans were roasted in an experimental roaster during 2 or 3 minutes either at 380 or 490 ºC air temperature and kept or not for 30 minutes under steeping. The heat treatment effects on soybeans were evaluated in a first trial through two different procedures: a) after 16 hours of an “in situ” ruminal incubation period, all heat treated soybeans showed an increased (P<0,05) rumen undegraded protein (RUP) content in comparison to raw soybeans; b) a pepsin/pancreatin “in vitro” procedure showed that roasting at 380 ºC, during 2 minutes, with steeping, or at 380 ºC , during 3 minutes without steeping, did not affect the “in vitro” enzymatic intestinal digestibility of soybeans (P>0,05). In a second trial, soybeans roasted at 380 ºC, during 2 minutes and kept under steeping were included in isonitrogenous and isocaloric lactating dairy cows rations and evaluated in comparison to raw soybeans, with two other protein sources as references. There were no differences (P>0,05) between the roasted and raw soybeans diets related either to dry matter or crude protein intakes, milk yield and composition and plasma urea nitrogen (PUN) and milk urea nitrogen (MUN) concentrations, but roasted soybeans yielded significantly (P<0,05) more milk per kg of dry matter or crude protein intake than raw soybeans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, evaluation methods to measure thermal performance of buildings have been developed in order to improve thermal comfort in buildings and reduce the use of energy with active cooling and heating systems. However, in developed countries, the criteria used in rating systems to asses the thermal and energy performance of buildings have demonstrated some limitations when applied to naturally ventilated building in tropical climates. The present research has as its main objective to propose a method to evaluate the thermal performance of low-rise residential buildings in warm humid climates, through computational simulation. The method was developed in order to conceive a suitable rating system for the athermal performance assessment of such buildings using as criteria the indoor air temperature and a thermal comfort adaptive model. The research made use of the software VisualDOE 4.1 in two simulations runs of a base case modeled for two basic types of occupancies: living room and bedroom. In the first simulation run, sensitive analyses were made to identify the variables with the higher impact over the cases´ thermal performance. Besides that, the results also allowed the formulation of design recommendations to warm humid climates toward an improvement on the thermal performance of residential building in similar situations. The results of the second simulation run was used to identify the named Thermal Performance Spectrum (TPS) of both occupancies types, which reflect the variations on the thermal performance considering the local climate, building typology, chosen construction material and studied occupancies. This analysis generates an index named IDTR Thermal Performance Resultant Index, which was configured as a thermal performance rating system. It correlates the thermal performance with the number of hours that the indoor air temperature was on each of the six thermal comfort bands pre-defined that received weights to measure the discomfort intensity. The use of this rating system showed to be appropriated when used in one of the simulated cases, presenting advantages in relation to other evaluation methods and becoming a tool for the understanding of building thermal behavior