1000 resultados para Agronomy and Crop Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crop models are simplified mathematical representations of the interacting biological and environmental components of the dynamic soil–plant–environment system. Sorghum crop modeling has evolved in parallel with crop modeling capability in general, since its origins in the 1960s and 1970s. Here we briefly review the trajectory in sorghum crop modeling leading to the development of advanced models. We then (i) overview the structure and function of the sorghum model in the Agricultural Production System sIMulator (APSIM) to exemplify advanced modeling concepts that suit both agronomic and breeding applications, (ii) review an example of use of sorghum modeling in supporting agronomic management decisions, (iii) review an example of the use of sorghum modeling in plant breeding, and (iv) consider implications for future roles of sorghum crop modeling. Modeling and simulation provide an avenue to explore consequences of crop management decision options in situations confronted with risks associated with seasonal climate uncertainties. Here we consider the possibility of manipulating planting configuration and density in sorghum as a means to manipulate the productivity–risk trade-off. A simulation analysis of decision options is presented and avenues for its use with decision-makers discussed. Modeling and simulation also provide opportunities to improve breeding efficiency by either dissecting complex traits to more amenable targets for genetics and breeding, or by trait evaluation via phenotypic prediction in target production regions to help prioritize effort and assess breeding strategies. Here we consider studies on the stay-green trait in sorghum, which confers yield advantage in water-limited situations, to exemplify both aspects. The possible future roles of sorghum modeling in agronomy and breeding are discussed as are opportunities related to their synergistic interaction. The potential to add significant value to the revolution in plant breeding associated with genomic technologies is identified as the new modeling frontier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tillage system and crop rotation have a major long-term effect on soil productivity and soil quality components such as soil carbon and other soil physical, biological, and chemical properties. In addition, both tillage and crop rotation have effects on weed and soil disease control. There is a need for well-defined, longterm tillage and crop rotation studies across the different soils and climate conditions in the state. The objective of this study was to evaluate the long-term effects of different tillage systems and crop rotations on soil productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Description based on: 229, published in 1997; title from cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drought during the pre-flowering stage can increase yield of peanut. There is limited information on genotypic variation for tolerance to and recovery from pre-flowering drought (PFD) and more importantly the physiological traits underlying genotypic variation. The objectives of this study were to determine the effects of moisture stress during the pre-flowering phase on pod yield and to understand some of the physiological responses underlying genotypic variation in response to and recovery from PFD. A glasshouse and field experiments were conducted at Khon Kaen University, Thailand. The glasshouse experiment was a randomized complete block design consisting of two watering regimes, i.e. fully-irrigated control and 1/3 available soil water from emergence to 40 days after emergence followed by adequate water supply, and 12 peanut genotypes. The field experiment was a split-plot design with two watering regimes as main-plots, and 12 peanut genotypes as sub-plots. Measurements of N-2 fixation, leaf area (LA) were made in both experiments. In addition, root growth was measured in the glasshouse experiment. Imposition of PFD followed by recovery resulted in an average increase in yield of 24 % (range from 10 % to 57 %) and 12 % (range from 2 % to 51 %) in the field and glasshouse experiments, respectively. Significant genotypic variation for N-2 fixation, LA and root growth was also observed after recovery. The study revealed that recovery growth following release of PFD had a stronger influence on final yield than tolerance to water deficits during the PFD. A combination of N-2 fixation, LA and root growth accounted for a major portion of the genotypic variation in yield (r = 0.68-0.93) suggesting that these traits could be used as selection criteria for identifying genotypes with rapid recovery from PFD. A combined analysis of glasshouse and field experiments showed that LA and N-2 fixation during the recovery had low genotype x environment interaction indicating potential for using these traits for selecting genotypes in peanut improvement programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relative resistance of 15 winter barley, three winter wheat and three winter oat cultivars on the UK recommended list 2003 and two spring wheat cultivars on the Irish 2003 recommended list were evaluated using Microdochium nivale in detached leaf assays to further understand components of partial disease resistance (PDR) and Fusarium head blight (FHB) resistance across cereal species. Barley cultivars showed incubation periods comparable to, and latent periods longer than the most FHB resistant Irish and UK wheat cultivars evaluated. In addition, lesions on barley differed from those on wheat as they were not visibly chlorotic when placed over a light box until sporulation occurred, in contrast to wheat cultivars where chlorosis of the infected area occurred when lesions first developed. The pattern of delayed chlorosis of the infected leaf tissue and longer latent periods indicate that resistances are expressed in barley after the incubation period is observed, and that these temporarily arrest the development of mycelium and sporulation. Incubation periods were longer for oats compared to barley or wheat cultivars. However, oat cultivars differed from both wheat and barley in that mycelial growth was observed before obvious tissue damage was detected under macroscopic examination, indicating tolerance of infection rather than inhibition of pathogen development, and morphology of sporodochia differed, appearing less well developed and being much less abundant. Longer latent periods have previously been related to greater FHB resistance in wheat. The present results suggest the longer latent periods of barley and oat cultivars, than wheat, are likely to play a role in overall FHB resistance if under the same genetic control as PDR components expressed in the head. However the limited range of incubation and latent periods observed within barley and oat cultivars evaluated was in contrast with wheat where incubation and latent periods were shorter and more variable among genotypes. The significance of the various combinations of PDR components detected in the detached leaf assay as components of FHB resistance in each crop requires further investigation, particularly with regard to the apparent tolerance of infection in oats and necrosis in barley, after the incubation period is observed, associated with retardation of mycelial growth and sporulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Components of partial disease resistance (PDR) to fusarium head blight (FHB), detected in a seed-germination assay, were compared with whole-plant FHB resistance of 30 USA soft red winter wheat entries in the 2002 Uniform Southern FHB Nursery. Highly significant (P <0·001) differences between cultivars in the in vitro seed-germination assay inoculated with Microdochium majus were correlated to FHB disease incidence (r = -0·41; P <0·05), severity (r = -0·47; P <0·01), FHB index (r = -0·46; P <0·01), damaged kernels (r = -0·52; P <0·01), grain deoxynivalenol (DON) concentration (r = -0·40; P <0·05) and incidence/severity/kernel-damage index (ISK) (r = -0·45; P <0·01) caused by Fusarium graminearum. Multiple linear regression analysis explained a greater percentage of variation in FHB resistance using the seed-germination assay and the previously reported detached-leaf assay PDR components as explanatory factors. Shorter incubation periods, longer latent periods, shorter lesion lengths in the detached-leaf assay and higher germination rates in the seed-germination assay were related to greater FHB resistance across all disease variables, collectively explaining 62% of variation for incidence, 49% for severity, 56% for F. graminearum-damaged kernels (FDK), 39% for DON and 59% for ISK index. Incubation period was most strongly related to disease incidence and the early stages of infection, while resistance detected in the seed germination assay and latent period were more strongly related to FHB disease severity. Resistance detected using the seed-germination assay was notable as it related to greater decline in the level of FDK and a smaller reduction in DON than would have been expected from the reduction in FHB disease assessed by visual symptoms.