1000 resultados para Age Determination by Skeleton


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wrist and hand region has been the most commonly used for estimating age and osseous development due to the great number of ossification centers. The aim was to determine which method, Tanner & Whitehouse's (TW3), Greulich & Pyle's (GP) or Eklof & Ringertz's, more closely relates to the chronological age in subjects with Down syndrome with chronological ages between 61 and 180 months, using wrist and hand radiographs. The sample consisted of 85 radiographs, 52 of males and 33 of females. Eklof & Ringertz's method was computerized (Radiomemory). Greulich & Pyle's atlas was used and compared with the wrist and hand radiographs. For the TW3 method, 13 ossification centers were evaluated; for each one of them, there are seven or eight development stages to which scores are assigned; these scores are then added and the results are transformed into osseous age values. No statistically significant differences were observed between the male and female genders for methods TW3 and GP, contrasting with the observed differences for the Eklof & Ringertz method. Correlation (r2) between osseous and chronological ages was 0.8262 for TW3 and 0.7965 for GP, while for the method of Eklof & Ringertz, it was 0.7656 for females and 0.8353 for males. The author concluded that the osseous age assessment method that better related to the chronological age was the TW3, followed by Greulich & Pyle's and Eklof & Ringertz's.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Clinical results of bone mineral density for children with inflammatory bowel disease are commonly reported using reference data for chronological age. It is known that these children, particularly those with Crohn disease, experience delayed growth and maturation. Therefore, it is more appropriate to compare clinical results with bone age rather than chronological age. MATERIALS AND METHODS: Areal bone mineral density (aBMD) was measured using dual energy x-ray absorptiometry, and bone age was assessed using the Tanner-Whitehouse 3 method from a standard hand/wrist radiograph. Results were available for 44 children ages 7.99 to 16.89 years. Areal bone mineral density measurements were converted to z scores using both chronological and bone ages for each subject. RESULTS: Areal bone mineral density z scores calculated using bone age, as opposed to chronological age, were significantly improved for both the total body and lumbar spine regions of interest. When subjects were grouped according to diagnosis, bone age generated z scores remained significantly improved for those with Crohn disease but not for those diagnosed with ulcerative colitis. Grouping of children with Crohn disease into younger and older ages produced significantly higher z scores using bone age compared with chronological for the older age group, but not the younger age group. CONCLUSIONS: Our findings, in accordance with those presented in the literature, suggest that aBMD results in children with Crohn disease should include the consideration of bone age, rather than merely chronological age. Bone size, although not as easily available, would also be an important consideration for interpreting results in paediatric populations. © 2009 by European Society for Pediatric Gastroenterology, Hepatology, and Nutrition and North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of skeletal maturation by morphological evaluation of the cervical vertebrae was evaluated in a 100 cephalograms. The analysis showed that this method was reproducible for assessing the individual's growth curve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to assess the skeletal age of Brazilian individuals with Down syndrome (DS) using the method of Greulich and Pyle. Forty subjects with DS between the ages of 6 and 16 years were studied and compared to a control sample of children without DS. The statistical analysis showed that at the age of 7 years the skeletal age (SA) of the individuals with DS was delayed in relation to their chronological age (CA) (SA < CA). On the other hand, at the age of 15 years, their SA was advanced in relation to their CA (SA > CA). An evaluation of the results suggests that the period of adolescent development for individuals with DS was shorter. These individuals reach the completion of bone maturation earlier compared to individuals without DS. © 2008 Special Care Dentistry Association and Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: The purpose of the present study was to analyze the relationship between root formation of the first premolars and skeletal maturation stages identified in hand-wrist radiographs. Methods: A cross-sectional study was carried out involving the panoramic and hand-wrist radiographs obtained on the same date of 232 patients, 123 boys and 109 girls aged 4 years and 5 months to 17 years and 12 months. Root formation stages of the first premolars were related to the ossification stages of the sesamoid bone, epiphyseal stages of the phalanx of the thumb and epiphyseal stages of the radius. Results: The studied variables demonstrated statistically significant correlations. Conclusion: Roots of the lower first premolars do not reach 2/3 of their complete length before adolescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: The purpose of the present study was to analyze the relationship between root formation of the first premolars and skeletal maturation stages identified in hand-wrist radiographs. METHODS: A cross-sectional study was carried out involving the panoramic and hand-wrist radiographs obtained on the same date of 232 patients, 123 boys and 109 girls aged 4 years and 5 months to 17 years and 12 months. Root formation stages of the first premolars were related to the ossification stages of the sesamoid bone, epiphyseal stages of the phalanx of the thumb and epiphyseal stages of the radius. RESULTS: The studied variables demonstrated statistically significant correlations. CONCLUSION: Roots of the lower first premolars do not reach 2/3 of their complete length before adolescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVOS: determinar a morfologia das 3ª e 4ª vértebras cervicais representativa dos estágios de pré-pico, pico e pós-pico de velocidade de crescimento estatural, definidos previamente pelos centros de ossificação do primeiro dedo em radiografias carpais ou do dedo polegar. MÉTODOS: foram utilizadas 120 telerradiografias em norma lateral de 106 pacientes selecionados da clínica de Ortodontia Preventiva e Interceptiva da Faculdade de Odontologia de Araçatuba-UNESP e Profis/HRAC-USP que apresentavam as correspondentes radiografias carpais ou do dedo polegar. As telerradiografias foram divididas em três grupos de 40 radiografias, de acordo com os estágios maturacionais pré-pico, pico e pós-pico, definidos pela imagem do primeiro dedo. A morfologia dos corpos das 3ª e 4ª vértebras cervicais foi determinada por dois examinadores devidamente calibrados em dois tempos diferentes. CONCLUSÕES: concluiu-se que o formato retangular horizontal com borda inferior reta foi representativo do estágio de pré-pico, independentemente da vértebra analisada. Já o formato retangular horizontal com borda inferior curva, especialmente se encontrado em C4, ou o formato quadrado com borda inferior reta caracterizaram o pico de velocidade de crescimento. O formato quadrado ou, principalmente, o retangular vertical com borda inferior curva determinaram o estágio de pós-pico de velocidade de crescimento da adolescência.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Odontologia - FOA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo foi realizado com o propósito de testar a reprodutibilidade, a confiabilidade e a concordância existente entre os métodos de Martins e Sakima (1977) para a radiografia de mão e punho, e Hassel e Farman (1995) e Baccetti et al. (2002) para as vértebras cervicais, quando comparados 2 a 2, e entre todos, conjuntamente. A amostra constou de 72 radiografias, sendo 36 telerradiografias em norma lateral da cabeça e 36 radiografias de mão e punho do lado esquerdo, de 36 indivíduos com Síndrome de Down (SD), sendo 13 do sexo feminino e 23 do masculino na faixa etária entre oito anos e seis meses até 18 anos e sete meses, com média de 13 anos e dez meses. De acordo com os resultados obtidos concluímos que, os índices de maturação avaliados por meio das vértebras cervicais e os centros de ossificação observados nas radiografias de mão e punho foram estatisticamente significativos, obtendo um excelente grau de concordância entre eles, considerados reprodutíveis e confiáveis. Quando comparados onjuntamente, todos os métodos se mostraram estatisticamente significantes com grau de concordância de razoável a boa, sendo considerados confiáveis na aplicação clínica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of growth layers in teeth as an indicator of age in odnotocetes and pinnipeds was suggested by Laws (1954) and since then the method has been used extensively in both marine and non-marine mammals. Dentinal growth layers are groups (growth layer groups) of repetitive alternating bands which in cross-section are similar to growth rings in trees. The most commonly used methods for counting growth layer groups (GLGs) are by undecalcified longitudinal thin sections (150 um) or decalcified and stained thin sections (10-30 um). In longitudinal sections viewed with light microscopy, GLGs appear as opaque and translucent cones nestled one inside another, with the oldest dentine Iying adjacent to the enamel, and the newest layer borderinq the pulp cavity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Teeth were taken from 120 bottlenose dolphins, Tursiops truncatus, which had stranded on the mid-Atlantic coast of the United States. The number of annual growth layer groups (GLGs) for each animal was used to construct a growth curve. The growth rate of coastal North Atlantic Ocean Tursiops is similar to other cetaceans in having a high initial rate of growth, with no differences in growth between females and males. In females, the first dentinal GLG is thickest and is followed by GLGs which become progressively narrower. In males, the second GLG is thicker than the first; GLGs beyond number two become progressively smaller but at a slower rate than in females. In males and females, the translucent layer makes up proportionally larger parts of the GLG as the animal ages, but in males the percent translucent layer remains constant at about 50% while in females it continues to increase up to about 70% of the GLG. These two factors, GLGs width and translucent layer width, indicate that the sex and age of the animal influence the deposition of GLGs. Incremental layers are also present, averaging 12 per GLG, and seem similar to incremental layers described in other marine mammals. A plot of the relationship of percent growth of the last GLG to time of death suggests that the deposition of GLGs is relatively constant, at least during the first half of the year, and that North Atlantic Ocean Tursiops give birth in the fall as well as in the spring. (PDF contains 31 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated within- and between-reader precision in estimating age for northern offshore spotted dolphins and possible effects on precision from the sex and age-class of specimens. Age was estimated from patterns of growth layer groups i n the dentine and cementum of the dolphins' teeth. Each specimen was aged at least three times by each of two persons. Two data samples were studied. The first comprised 800 of each sex from animals collected during 1973-78. The second included 45 females collected during 1981. There were significant, generally downward trends through time in the estimates from multiple readings of the 1973-78 data. These trends were slight, and age distributions from last readings and mean estimates per specimen appeared to be homogeneous. The largest factor affecting precision in the 1973-78 data set was between-reader variation. In light of the relatively high within-reader precision (trends considered), the consistent between-reader differences suggest a problem of accuracy rather than precision for this series. Within-reader coefficients of variation averaged approximately 7% and 11%. Pooling the data resulted i n an average coefficient of variation near 16%. Within- and between-reader precision were higher for the 1981 sample, and the data homogeneous over both factors. CVs averaged near 5% and 6% for the two readers. These results point to further refinements in reading the 1981 series. Properties of the 1981 sample may be partly responsible for greater precision: by chance there were proportionately fewer older dolphins included, and preparation and selection criteria were probably more stringent. (PDF contains 35 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful application of techniques to enhance detection of age marks in biological specimens is of vital importance in fisheries research. This manual documents age determination techniques used by staff at the Woods Hole Laboratory, National Marine Fisheries Service. General information on procedures for preparing anatomical structures is described, together with criteria used to interpret growth patterns and assign ages. Annotated photographs of age structures are provided to illustrate criteria. Detailed procedures are given for the following species: Atlantic herring (Clupea harengus), haddock (Melanogrammus aeglefinus), Atlantic cod (Gadus morhua), pollock (Pollachius virens), silver hake (Merluccius bilinearis), red hake (Urophycis chuss), black sea bass (Centropristis striata), weakfish (Cynoscion regalis), Atlantic mackerel (Scomber scombrus), butterfish (Peprilus triacanthus), redfish (Sebastes fasciatus), summer flounder (Paralichthys dentatus), winter flounder (Pseudopleuronectes americanus), witch flounder (Glyptocephalus cynoglossus), American plaice (Hippoglossoides platessoides), yellowtail flounder (Limanda ferruginea), surf clam (Spisula solidissima), and ocean quahog (Arctica islandica). (PDF file contains 142 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate and precise estimates of age and growth rates are essential parameters in understanding the population dynamics of fishes. Some of the more sophisticated stock assessment models, such as virtual population analysis, require age and growth information to partition catch data by age. Stock assessment efforts by regulatory agencies are usually directed at specific fisheries which are being heavily exploited and are suspected of being overfished. Interest in stock assessment of some of the oceanic pelagic fishes (tunas, billfishes, and sharks) has developed only over the last decade, during which exploitation has increased steadily in response to increases in worldwide demand for these resources. Traditionally, estimating the age of fishes has been done by enumerating growth bands on skeletal hardparts, through length frequency analysis, tag and recapture studies, and raising fish in enclosures. However, problems related to determining the age of some of the oceanic pelagic fishes are unique compared with other species. For example, sampling is difficult for these large, highly mobile fishes because of their size, extensive distributions throughout the world's oceans, and for some, such as the marlins, infrequent catches. In addition, movements of oceanic pelagic fishes often transect temperate as well as tropical oceans, making interpretation of growth bands on skeletal hardparts more difficult than with more sedentary temperate species. Many oceanic pelagics are also long-lived, attaining ages in excess of 30 yr, and more often than not, their life cycles do not lend themselves easily to artificial propagation and culture. These factors contribute to the difficulty of determining ages and are generally characteristic of this group-the tunas, billfishes, and sharks. Accordingly, the rapidly growing international concern in managing oceanic pelagic fishes, as well as unique difficulties in ageing these species, prompted us to hold this workshop. Our two major objectives for this workshop are to: I) Encourage the interchange of ideas on this subject, and 2) establish the "state of the art." A total of 65 scientists from 10 states in the continental United States and Hawaii, three provinces in Canada, France, Republic of Senegal, Spain, Mexico, Ivory Coast, and New South Wales (Australia) attended the workshop held at the Southeast Fisheries Center, Miami, Fla., 15-18 February 1982. Our first objective, encouraging the interchange of ideas, is well illustrated in the summaries of the Round Table Discussions and in the Glossary, which defines terms used in this volume. The majority of the workshop participants agreed that the lack of validation of age estimates and the means to accomplish the same are serious problems preventing advancements in assessing the age and growth of fishes, particularly oceanic pelagics. The alternatives relating to the validation problem were exhaustively reviewed during the Round Table Discussions and are a major highlight of this workshop. How well we accomplished our second objective, to establish the "state of the art" on age determination of oceanic pelagic fishes, will probably best be judged on the basis of these proceedings and whether future research efforts are directed at the problem areas we have identified. In order to produce high-quality papers, workshop participants served as referees for the manuscripts published in this volume. Several papers given orally at the workshop, and included in these proceedings, were summarized from full-length manuscripts, which have been submitted to or published in other scientific outlets-these papers are designated as SUMMARY PAPERS. In addition, the SUMMARY PAPER designation was also assigned to workshop papers that represented very preliminary or initial stages of research, cursory progress reports, papers that were data shy, or provide only brief reviews on general topics. Bilingual abstracts were included for all papers that required translation. We gratefully acknowledge the support of everyone involved in this workshop. Funding was provided by the Southeast Fisheries Center, and Jack C. Javech did the scientific illustrations appearing on the cover, between major sections, and in the Glossary. (PDF file contains 228 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Age and Growth Program at the Alaska Fisheries Science Center is tasked with providing age data in order to improve the basic understanding of the ecology and fisheries dynamics of Alaskan fish species. The primary focus of the Age and Growth Program is to estimate ages from otoliths and other calcified structures for age-structured modeling of commercially exploited stocks; however, the program has recently expanded its interests to include numerous studies on topics ranging from age estimate validation to the growth and life history of non-target species. Because so many applications rely upon age data and particularly upon assurances as to their accuracy and precision, the Age and Growth Program has developed this practical guide to document the age determination of key groundfish species from Alaskan waters. The main objective of this manual is to describe techniques specific to the age determination of commercially and ecologically important species studied by the Age and Growth Program. The manual also provides general background information on otolith morphology, dissection, and preparation, as well as descriptions of methods used to measure precision and accuracy of age estimates. This manual is intended not only as a reference for age readers at the AFSC and other laboratories, but also to give insight into the quality of age estimates to scientists who routinely use such data.