972 resultados para Affinity Binding-sites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the physico-chemical characteristics of protein-protein interactions, protein sequences and overall structural folds have been analyzed previously. To highlight this, discovery and examination of amino acid patterns at the binding sites defined by structural proximity in 3-dimensional (3D) space are essential. In this paper, we investigate the interacting preferences of 3D pattern pairs discovered separately in transient and obligate protein complexes. These 3D pattern pairs are not necessarily sequence-consecutive, but each residue in two groups of amino acids from two proteins in a complex is within certain °A threshold to most residues in the other group. We develop an algorithm called AA-pairs by which every pair of interacting proteins is represented as a bipartite graph, and it discovers all maximal quasi-bicliques from every bipartite graph to form our 3D pattern pairs. From 112 and 2533 highly conserved 3D pattern pairs discovered in the transient and obligate complexes respectively, we observe that Ala and Leu is the highest occuring amino acid in interacting 3D patterns of transient (20.91%) and obligate (33.82%) complexes respectively. From the study on the dipeptide composition on each side of interacting 3D pattern pairs, dipeptides Ala-Ala and Ala-Leu are popular in 3D patterns of both transient and obligate complexes. The interactions between amino acids with large hydrophobicity difference are present more in the transient than in the obligate complexes. On contrary, in obligate complexes, interactions between hydrophobic residues account for the top 5 most occuring amino acid pairings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We employed a highly specific photoaffinity labeling procedure, using 14C-labeled S-adenosyl-L-methionine (AdoMet) to define the chemical structure of the AdoMet binding centers on cyclosporin synthetase (CySyn). Tryptic digestion of CySyn photolabeled with either [methyl-14C]AdoMet or [carboxyl-14C]AdoMet yielded the sequence H2N-Asn-Asp-Gly-Leu-Glu-Ser-Tyr-Val-Gly-Ile-Glu-Pro-Ser-Arg-COOH (residues 10644-10657), situated within the N-methyltransferase domain of module 8 of CySyn. Radiosequencing detected Glu10654 and Pro10655 as the major sites of derivatization. [carboxyl-14C]AdoMet in addition labeled Tyr10650. Chymotryptic digestion generated the radiolabeled peptide H2N-Ile-Gly-Leu-Glu-Pro-Ser-Gln-Ser-Ala-Val-Gln-Phe-COOH, corresponding to amino acids 2125-2136 of the N-methyltransferase domain of module 2. The radiolabeled amino acids were identified as Glu2128 and Pro2129, which are equivalent in position and function to the modified residues identified with tryptic digestions in module 8. Homology modeling of the N-methyltransferase domains indicates that these regions conserve the consensus topology of the AdoMet binding fold and consensus cofactor interactions seen in structurally characterized AdoMet-dependent methyltransferases. The modified sequence regions correspond to the motif II consensus sequence element, which is involved in directly complexing the adenine and ribose components of AdoMet. We conclude that the AdoMet binding to nonribosomal peptide synthetase N-methyltransferase domains obeys the consensus cofactor interactions seen among most structurally characterized low molecular weight AdoMet-dependent methyltransferases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To explore three possible binding sites of trypanothione and glutathione reductase, namely, the active, the dimer interface and the coenzyme NADPH binding site, a series of eight compounds, nitrofurans and nitrothiophenes derivatives, were docked, using their crystallographic and modeled conformations. Docking results showed that, for both families and both enzymes, compounds are more likely to bind in the interface site, even though there is some probability of binding in the active site. These studies are in agreement with experimental data, which suggest that these class of compounds can act either as uncompetitive or mixed type inhibitors, and also with the finding that there is an alpha-helix which connects the active with the interface site, thus allowing charge transference between them. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hrp1p is a heterogeneous ribonucleoprotein (hnRNP) from the yeast Saccharomyces cerevisiae that is involved in the cleavage and polyadenylation of the 3'-end of mRNAs and mRNA export. In addition, Hrp1p is one of several RNA-binding proteins that are posttranslationally modified by methylation at arginine residues. By using-functional recombinant Hrp1p, we have identified RNA sequences with specific high affinity binding sites. These sites correspond to the efficiency element for mRNA 3'-end formation, UAUAUA. To examine the effect of methylation on specific RNA binding, purified recombinant arginine methyltransferase (Hmt1p) was used to methylate Hrp1p. Methylated Hrp1p binds with the same affinity to UAUAUA-containing RNAs as unmethylated Hrp1p indicating that methylation does not affect specific RNA binding. However, RNA itself inhibits the methylation of Hrp1p and this inhibition is enhanced by RNAs that specifically bind Hrp1p. Taken together, these data support a model in which protein methylation occurs prior to protein-RNA binding in the nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolutionarily conserved factor eIF5A is the only protein known to undergo hypusination, a unique posttranslational modification triggered by deoxyhypusine synthase (Dys1). Although eIF5A is essential for cell viability, the function of this putative translation initiation factor is still obscure. To identify eIF5A-binding proteins that could clarify its function, we screened a two-hybrid library and identified two eIF-5A partners in S. cerevisiae: Dys1 and the protein encoded by the gene YJR070C, named Lia1 (Ligand of eIF5A). The interactions were confirmed by GST pulldown. Mapping binding sites for these proteins revealed that both eIF5A domains can bind to Dys1, whereas the C-terminal domain is sufficient to bind Lia1. We demonstrate for the first time in vivo that the N-terminal α-helix of Dys1 can modulate enzyme activity by inhibiting eIF5A interaction. We suggest that this inhibition be abrogated in the cell when hypusinated and functional eIF5A is required. © 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vip3Aa, Vip3Af, Cry1Ab, and Cry1Fa were tested for their toxicities and binding interactions. Vip3A proteins were more toxic than Cry1 proteins. Binding assays showed independent specific binding sites for Cry1 and Vip3A proteins. Cry1Ab and Cry1Fa competed for the same binding sites, whereas Vip3Aa competed for those of Vip3Af. Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muscarinic acetylcholine (M) and adrenergic (AR) receptors mediate gastrointestinal motility. Using radioligand binding assays and real-time polymerase chain reaction, the densities of binding sites and mRNA levels of M(2), M(3), alpha(2AD)- and beta(2)-AR were compared in muscle tissues from the abomasal fundus, pylorus, duodenum, caecum, and external loop of the spiral colon of eight cows with left displacement of abomasum (LDA), and of eight healthy cows. Specific binding of the [(3)H]-ligands to each of the four receptors was competitive and saturable. Binding sites of M(2) (all intestinal sites), M(3) (duodenum and caecum), and of alpha(2AD)-AR (abomasal fundus) were lower (P<0.05) in cows with LDA than in healthy cows. The coefficients of correlation between binding sites and mRNA transcripts of receptors were dissimilar in cows with LDA and healthy cows. The decrease in densities of M (intestine) and of alpha(2AD)-AR (abomasum) receptors suggests their implication in the impairment of motility associated with or leading to LDA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To measure maximum binding capacity (B(max)) and levels of mRNA expression for alpha(2)-adrenergic receptor (AR) subtypes in ileal and colonic muscle layers of healthy dairy cows. SAMPLE POPULATION: Ileal and colonic muscle specimens from 6 freshly slaughtered cows. PROCEDURES: Ileal and colonic muscle layers were obtained by scraping the mucosa and submucosa from full-thickness tissue specimens. Level of mRNA expression for alpha(2)-AR subtypes was measured by real-time reverse transcriptase-PCR analysis and expressed relative to the mean mRNA expression of glyceraldehyde phosphate dehydrogenase, ubiquitin, and 18S ribosomal RNA. Binding studies were performed with tritiated RX821002 ((3)H-RX821002) and subtype-selective ligands as competitors. RESULTS: mRNA expression for alpha(2AD)-, alpha(2B)-, and alpha(2C)-AR subtypes was similar in ileal and colonic muscle layers. The mRNA expression for alpha(2AD)-AR was significantly greater than that for alpha(2B)- and alpha(2C)-AR subtypes, representing 92%, 6%, and 2%, respectively, of the total mRNA. Binding competition of (3)H-RX821002 with BRL44408, imiloxan, and MK-912 was best fitted by a 1-site model. The B(max) of alpha(2AD)- and alpha(2C)-AR sub-types was greater than that of alpha(2B)-AR. The B(max) and level of mRNA expression were only correlated (r = 0.8) for alpha(2AD)-AR. Ratio of B(max) to mRNA expression for alpha(2C)-AR was similar to that for alpha(2B)-AR, but significantly greater than for alpha(2AD)-AR. CONCLUSIONS AND CLINICAL RELEVANCE: Subtypes of alpha(2)-AR in bovine intestinal muscle layers are represented by a mixture of alpha(2AD)- and alpha(2C)-ARs and of alpha(2B)-AR at a lower density. Information provided here may help in clarification of the role of AR subtypes in alpha(2)-adrenergic mechanisms regulating bovine intestinal motility.