866 resultados para Adipose tissue - Theses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: It has been suggested that adiponectin regulates plasma free fatty acid (FFA) clearance by stimulating FFA uptake and/or oxidation in muscle. We aimed to determine changes in plasma adiponectin concentration and adiponectin receptor 1 and 2 mRNA expression in skeletal muscle during and after prolonged exercise under normal, fasting conditions (high FFA trial; HFA) and following pharmacological inhibition of adipose tissue lipolysis (low FFA trial; LFA). Furthermore, we aimed to detect and locate adiponectin in skeletal muscle tissue. Methods: Ten subjects performed two exercise trials (120 min at 50% VO2max). Indirect calorimetry was used to determine total fat oxidation rate. Plasma samples were collected at rest, during exercise and during post-exercise recovery to determine adiponectin, FFA and glycerol concentrations. Muscle biopsies were taken to determine adiponectin protein and adiponectin receptor 1 and 2 mRNA expression and to localise intramyocellular adiponectin. Results: Basal plasma adiponectin concentrations averaged 6.57±0.7 and 6.63±0.8 mg/l in the HFA and LFA trials respectively, and did not change significantly during or after exercise. In the LFA trial, plasma FFA concentrations and total fat oxidation rates were substantially reduced. However, plasma adiponectin and muscle adiponectin receptor 1 and 2 mRNA expression did not differ between trials. Immunohistochemical staining of muscle cross-sections showed the presence of adiponectin in the sarcolemma of individual muscle fibres and within the interfibrillar arterioles. Conclusion: Plasma adiponectin concentrations and adiponectin receptor 1 and 2 mRNA expression in muscle are not acutely regulated by changes in adipose tissue lipolysis and/or plasma FFA concentrations. Adiponectin is abundantly expressed in muscle, and, for the first time, it has been shown to be present in/on the sarcolemma of individual muscle fibres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser563 and Ser660, the PKA regulatory sites, and Ser565, the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by ~80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser563 and Ser660 phosphorylation were increased by 27% at 15 min (P < 0.05), remained elevated at 90 min, and returned to preexercise values postexercise. Skeletal muscle HSL Ser565 phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser660 was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser660 but not Ser563 phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser660 phosphorylation. Taken together, these data indicate that HSL activity is maintained in the face of AMPK activation as a result of elevated HSL Ser660 phosphorylation in adipose tissue but not skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catch-up growth, a risk factor for later obesity, type 2 diabetes, and cardiovascular diseases, is characterized by hyperinsulinemia and an accelerated rate for recovering fat mass, i.e., catch-up fat. To identify potential mechanisms in the link between hyperinsulinemia and catch-up fat during catch-up growth, we studied the in vivo action of insulin on glucose utilization in skeletal muscle and adipose tissue in a previously described rat model of weight recovery exhibiting catch-up fat caused by suppressed thermogenesis per se. To do this, we used euglycemic-hyperinsulinemic clamps associated with the labeled 2-deoxy-glucose technique. After 1 week of isocaloric refeeding, when body fat, circulating free fatty acids, or intramyocellular lipids in refed animals had not yet exceeded those of controls, insulin-stimulated glucose utilization in refed animals was lower in skeletal muscles (by 20–43%) but higher in white adipose tissues (by two- to threefold). Furthermore, fatty acid synthase activity was higher in adipose tissues from refed animals than from fed controls. These results suggest that suppressed thermogenesis for the purpose of sparing glucose for catch-up fat, via the coordinated induction of skeletal muscle insulin resistance and adipose tissue insulin hyperresponsiveness, might be a central event in the link between catch-up growth, hyperinsulinemia and risks for later metabolic syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effects of exercise training on adipose tissue and skeletal muscle GLUT4 expression in patients with type 2 diabetes (T2D). Muscle and adipose tissue samples were obtained before and after 4-weeks of exercise training in seven patients with T2D [47 ± 2 years, body mass index (BMI) 28 ± 2]. Seven control subjects (54 ± 4, BMI 30 ± 2) were recruited for baseline comparison. Adipose tissue GLUT4 protein expression was 43% lower (p < 0.05) in patients with T2D compared with control subjects and exercise training increased (p < 0.05) adipose tissue GLUT4 expression by 36%. Skeletal muscle GLUT4 protein expression was not different between control subjects and patients with T2D. Exercise training increased (p < 0.05) skeletal muscle GLUT4 protein expression by 20%. In conclusion, 4-weeks of exercise training increased GLUT4 expression in adipose tissue and skeletal muscle of patients with T2D, although the functional benefits of this adaptation appear to be dependent on an optimal β-cell function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mice lacking the Jak tyrosine kinase member Tyk2 become progressively obese due to aberrant development of Myf5+ brown adipose tissue (BAT). Tyk2 RNA levels in BAT and skeletal muscle, which shares a common progenitor with BAT, are dramatically decreased in mice placed on a high-fat diet and in obese humans. Expression of Tyk2 or the constitutively active form of the transcription factor Stat3 (CAStat3) restores differentiation in Tyk2−/− brown preadipocytes. Furthermore, Tyk2−/− mice expressing CAStat3 transgene in BAT also show improved BAT development, normal levels of insulin, and significantly lower body weights. Stat3 binds to PRDM16, a master regulator of BAT differentiation, and enhances the stability of PRDM16 protein. These results define Tyk2 and Stat3 as critical determinants of brown fat lineage and suggest that altered levels of Tyk2 are associated with obesity in both rodents and humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 The major findings established a mouse brown adipose tissue (BAT)-enriched miRNA profile conserved in human BAT and predicted to target genes potentially involved in growth and development. The present results also identified a human skeletal muscle-derived CD34+ cell population with the capacity to differentiate into brown adipocytes in vitro. These CD34+ expressed common miRNAs to mouse and human BAT. Finally these findings show an up-regulation of 4 miRNAs in human adult skeletal muscle following cold exposure. These miRNAs were also present in mouse and human BAT as well as in CD34+ brown adipocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesised that strict inactivity (bed rest) would lead to regional differences in fat deposition. Twenty-four male subjects underwent 60 d bed rest and remained inactive (n = 9), performed resistance exercise plus whole-body vibration (RVE; n = 7) or resistance exercise only (RE; n = 8). Fat mass was assessed via dual X-ray absorptiometry. In the inactive subjects, fat deposition differed between body regions (P = 0.0005) with android region visceral adipose tissue increasing the most (+29% at the end of bed rest), followed by remainder of the trunk (from chin to the iliac crest; +10%) and the arms and legs (both +7%). Insulin sensitivity reduced in the inactive subjects at the end of bed rest (P = 0.036). RE did not have a significant impact on regional fat mass changes (P ⩾ 0.055). In RVE, increases in visceral adipose tissue (-14%; P = 0.028 vs inactive subjects) and in the arms (arms -8%, P = 0.011 vs inactive) were not seen. We conclude that inactivity leads to a preferential increase in visceral adipose tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesised that strict inactivity (bed rest) would lead to regional differences in fat deposition. Twenty-four male subjects underwent 60d bed rest and remained inactive (n = 9), performed resistance exercise plus whole-body vibration (RVE; n = 7) or resistance exercise only (RE; n = 8). Fat mass was assessed via dual X-ray absorptiometry. In the inactive subjects, fat deposition differed between body regions (P = 0.0005) with android region visceral adipose tissue increasing the most (+29% at the end of bed rest), followed by remainder of the trunk (from chin to the iliac crest; +10%) and the arms and legs (both +7%). Insulin sensitivity reduced in the inactive subjects at the end of bed rest (P = 0.036). RE did not have a significant impact on regional fat mass changes (P ≥ 0.055). In RVE, increases in visceral adipose tissue (-14%; P = 0.028 vs inactive subjects) and in the arms (arms -8%, P = 0.011 vs inactive) were not seen. We conclude that inactivity leads to a preferential increase in visceral adipose tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AimsThe association between central obesity and insulin resistance reflects the properties of visceral adipose tissue. Our aim was to gain further insight into this association by analysing the lipid composition of subcutaneous and omental adipose tissue in obese women with and without insulin resistance.MethodsSubcutaneous and omental adipose tissue and serum were obtained from 29 obese non-diabetic women, 13 of whom were hyperinsulinemic. Histology, and lipid and gene profiling were performed.ResultsIn omental adipose tissue of obese, insulin-resistant women, adipocyte hypertrophy and macrophage infiltration were accompanied by an increase in GM3 ganglioside and its synthesis enzyme ST3GAL5; in addition, phosphatidylethanolamine (PE) lipids were increased and their degradation enzyme, PEMT, decreased. ST3GAL5 was expressed predominantly in adipose stromovascular cells and PEMT in adipocytes. Insulin resistance was also associated with an increase in PE lipids in serum.InterpretationThe relevance of these findings to insulin resistance in humans is supported by published mouse studies in which adipocyte GM3 ganglioside, increased by the inflammatory cytokine tumour necrosis factor-α, impaired insulin action, and PEMT was required for adipocyte lipid storage. Thus, in visceral adipose tissue of obese humans, an increase in GM3 ganglioside secondary to inflammation may contribute to insulin resistance and a decrease in PEMT may be a compensatory response to adipocyte hypertrophy.International Journal of Obesity accepted article preview online, 26 October 2015. doi:10.1038/ijo.2015.223.