961 resultados para Adhesion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-implant adhesive strength is important for prostheses. In this paper, an investigation is described into the adhesion of bovine chondrocytes to Ti6Al4V-based substrates with different surface roughnesses and compositions. Cells were cultured for 2 or 5 days, to promote adhesion. The ease of cell removal was characterised, using both biochemical (trypsin) and mechanical (accelerated buoyancy and liquid flow) methods. Computational fluid dynamics (CFD) modelling has been used to estimate the shear forces applied to the cells by the liquid flow. A comparison is presented between the ease of cell detachment indicated using these methods, for the three surfaces investigated. © 2008 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cross-sectional indentation method is extended to evaluate the interfacial adhesion between brittle coating and ductile substrate. The experimental results on electroplated chromium coating/steel substrate show that the interfacial separation occurs due to the edge chipping of brittle coating. The corresponding models are established to elucidate interfacial separation processes. This work further highlights the advantages and potential of this novel indentation method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesion forces of Dipalmitoylphosphatidylcholine ( DPPC) membrane in the gel phase are investigated by molecular dynamics ( MD) simulation. In the simulations, individual DPPC molecules are pulled out of DPPC membranes with different rates and we get the maximum adhesion forces of DPPC membrane. We find that the maximum adhesion forces increase with pull rate, from about 400 to 700 pN when pull rates are from 0.001 to 0.03 nm/ps. We analyze the relationship between pull rate and adhesion forces of different origins using Brownian dynamics and notice that viscosity of solvent plays an important role in adhesion forces. Then we simulate the motion of a single DPPC molecule in solvent and it elucidates that the maximum drag force is almost linear with respect to the pull rate. We use Stokes' relation to describe the motion of a single DPPC molecule and deduce the effective length of a DPPC molecule. Conformational analyses indicate that the free energy variation of a DPPC molecule inside and outside of the DPPC membrane is an essential part of adhesion energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is motivated by experimental observations that cells on stretched substrate exhibit different responses to static and dynamic loads. A model of focal adhesion that can consider the mechanics of stress fiber, adhesion bonds, and substrate was developed at the molecular level by treating the focal adhesion as an adhesion cluster. The stability of the cluster under dynamic load was studied by applying cyclic external strain on the substrate. We show that a threshold value of external strain amplitude exists beyond which the adhesion cluster disrupts quickly. In addition, our results show that the adhesion cluster is prone to losing stability under high-frequency loading, because the receptors and ligands cannot get enough contact time to form bonds due to the high-speed deformation of the substrate. At the same time, the viscoelastic stress fiber becomes rigid at high frequency, which leads to significant deformation of the bonds. Furthermore, we find that the stiffness and relaxation time of stress fibers play important roles in the stability of the adhesion cluster. The essence of this work is to connect the dynamics of the adhesion bonds (molecular level) with the cell's behavior during reorientation (cell level) through the mechanics of stress fiber. The predictions of the cluster model are consistent with experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell adhesion, which is mediated by the receptor-ligand bonds, plays an essential role in various biological processes. Previous studies often described the force-extension relationship of receptor-ligand bond with linear assumption. However, the force-extension relationship of the bond is intrinsically nonlinear, which should have significant influence on the mechanical behavior of cell adhesion. In this work, a nonlinear mechanical model for cell adhesion is developed, and the adhesive strength was studied at various bond distributions. We find that the nonlinear mechanical behavior of the receptor-ligand bonds is crucial to the adhesive strength and stability. This nonlinear behavior allows more bonds to achieve large bond force simultaneously, and therefore the adhesive strength becomes less sensitive to the change of bond density at the outmost periphery of the adhesive area. In this way, the strength and stability of cell adhesion are soundly enhanced. The nonlinear model describes the cell detachment behavior better than the linear model. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibrillar structures are common features on the feet of many animals, such as geckos, spiders and flies. Theoretical analyses often use periodical array to simulate the assembly, and each fibril is assumed to be of equal load sharing (ELS). On the other hand, studies on a single fibril show that the adhesive interface is flaw insensitive when the size of the fibril is not larger than a critical one. In this paper, the Dugdale Barenblatt model has been used to study the conditions of ELS and how to enhance adhesion by tuning the geometrical parameters in fibrillar structures. Different configurations in an array of fibres are considered, such as line array, square and hexagonal patterns. It is found that in order to satisfy flaw-insensitivity and ELS conditions, the number of fibrils and the pull-off force of the fibrillar interface depend significantly on the fibre separation, the interface interacting energy, the effective range of cohesive interaction and the radius of fibrils. Proper tuning of the geometrical parameters will enhance the pull-off force of the fibrillar structures. This study may suggest possible methods to design strong adhesion devices for engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geckos and many insects have evolved elastically anisotropic adhesive tissues with hierarchical structures that allow these animals not only to adhere robustly to rough surfaces but also to detach easily upon movement. In order to improve Our understanding of the role of elastic anisotropy in reversible adhesion, here we extend the classical JKR model of adhesive contact mechanics to anisotropic materials. In particular, we consider the plane strain problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic elastic half space with the axis of symmetry oriented at an angle inclined to the surface. The cylinder is then subjected to an arbitrarily oriented pulling force. The critical force and contact width at pull-off are calculated as a function of the pulling angle. The analysis shows that elastic anisotropy leads to an orientation-dependent adhesion strength which can vary strongly with the direction of pulling. This study may suggest possible mechanisms by which reversible adhesion devices can be designed for engineering applications. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cross-sectional indentation method is extended to evaluate the interfacial adhesion between brittle coating and ductile substrate. The experimental results on electroplated chromium coating/steel substrate show that the interfacial separation occurs due to the edge chipping of brittle coating. The corresponding models are established to elucidate interfacial separation processes. This work further highlights the advantages and potential of this novel indentation method

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulation is employed to study the bio-adhesion in F1 ATP molecular motor. Histidine-peptide is widely used as linkage in micro systems because of its strong binding strength to metals. This paper focuses on the adhesion between a synthetic peptide containing 6xHis-tag (Gly-Gly-Lys-Gly-Gly-Lys-Gly-Gly-His-His-His-His-His-His) and metal substrate, which is used to define the position of the F1 ATP molecular motor on the metal substrate. It is shown that the binding strength between histidine and nickel substrate is the strongest, while that of copper is smaller and that of gold substrate is the smallest. From the result of simulation, we find that the stability of adhesion between histidine and the metal substate result of the ringed structure in histidine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaluation of the interfacial adhesion of coating system has always been a rough task. In this paper, a special testing method of cross-sectional indentation is applied on a model coating system, i.e. electroplated chromium on a steel substrate which is generally regarded as an example of materials pair with strong adhesion. Based on fractography analysis with SEM and interfacial stress simulation with FEM, it is found that interfacial shear stress may induce coating spalling. More interestingly, spalling location is sensitive to substrate pretreatment process. This shows the feasibility of cross-sectional indentation to distinguish interfacial strength at a high level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesion forces of Dipalmitoylphosphatidylcholine ( DPPC) membrane in the gel phase are investigated by molecular dynamics ( MD) simulation. In the simulations, individual DPPC molecules are pulled out of DPPC membranes with different rates and we get the maximum adhesion forces of DPPC membrane. We find that the maximum adhesion forces increase with pull rate, from about 400 to 700 pN when pull rates are from 0.001 to 0.03 nm/ps. We analyze the relationship between pull rate and adhesion forces of different origins using Brownian dynamics and notice that viscosity of solvent plays an important role in adhesion forces. Then we simulate the motion of a single DPPC molecule in solvent and it elucidates that the maximum drag force is almost linear with respect to the pull rate. We use Stokes' relation to describe the motion of a single DPPC molecule and deduce the effective length of a DPPC molecule. Conformational analyses indicate that the free energy variation of a DPPC molecule inside and outside of the DPPC membrane is an essential part of adhesion energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dimorphic fungus Candida albicans is able to trigger a cytokine-mediated pro-inflammatory response that increases tumor cell adhesion to hepatic endothelium and metastasis. To check the intraspecific differences in this effect, we used an in vitro murine model of hepatic response against C. albicans, which made clear that tumor cells adhered more to endothelium incubated with blastoconidia, both live and killed, than germ tubes. This finding was related to the higher carbohydrate/protein ratio found in blastoconidia. In fact, destruction of mannose ligand residues on the cell surface by metaperiodate treatment significantly reduced tumor cell adhesion induced. Moreover, we also noticed that the effect of clinical strains was greater than that of the reference one. This finding could not be explained by the carbohydrate/protein data, but to explain these differences between strains, we analyzed the expression level of ten genes (ADH1, APE3, IDH2, ENO1, FBA1, ILV5, PDI1, PGK1, QCR2 and TUF1) that code for the proteins identified previously in a mannoprotein-enriched pro-metastatic fraction of C. albicans. The results corroborated that their expression was higher in clinical strains than the reference one. To confirm the importance of the mannoprotein fraction, we also demonstrate that blocking the mannose receptor decreases the effect of C. albicans and its mannoproteins, inhibiting IL-18 synthesis and tumor cell adhesion increase by around 60%. These findings could be the first step towards a new treatment for solid organ cancers based on the role of the mannose receptor in C. albicans-induced tumor progression and metastasis.