1000 resultados para Acid Glucuronide


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study aims to investigate the dose dependent effects of consuming diets enriched in flavonoid-rich and flavonoid-poor fruits and vegetables on the urine metabolome of adults who had a C1.5 fold increased risk of cardiovascular diseases. A single-blind, dose-dependent, parallel randomized controlled dietary intervention was conducted where volunteers (n = 126) were randomly assigned to one of three diets: high flavonoid diet, low flavonoid diet or habitual diet as a control for 18 weeks. High resolution LC– MS untargeted metabolomics with minimal sample cleanup was performed using an Orbitrap mass spectrometer. Putative biomarkers which characterize diets with high and low flavonoid content were selected by state-of-the-art data analysis strategies and identified by HR-MS and HR-MS/MS assays. Discrimination between diets was observed by application of two linear mixedmodels: one including a diet-time interaction effect and the second containing only a time effect. Valerolactones, phenolic acids and their derivatives were among sixteen biomarkers related to the high flavonoid dietary exposure. Four biomarkers related to the low flavonoid diet belonged to the family of phenolic acids. For the first time abscisic acid glucuronide was reported as a biomarker after a dietary intake, however its origins have to be examined by future hypothesis driven experiments using a more targeted approach. This metabolomic analysis has identified a number of dose dependent urinary biomarkers (i.e. proline betaine or iberin-N-acetyl cysteine), which can be used in future observation and intervention studies to assess flavonoids and nonflavonoid phenolic intakes and compliance to fruit and vegetable intervention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Achieving adequate therapeutic levels of immunosuppressive medications is important in rejection prevention. This study examined exposure to mycophenolic acid (MPA) in kidney transplant patients within the first 5 days posttransplantation. Methods. This single-center, nonrandomized study of first solitary kidney allograft recipients receiving cyclosporine (n = 116) or tacrolimus (n = 50) included patients who received either 1 g or 1.5 g of mycophenolate mofetil twice daily starting postoperatively. Exposure to MPA was measured at days 3 and 5 posttransplant using published limited sampling time equations. Results. There were no significant differences in exposure in the cyclosporine-treated patients receiving 3-g (n = 22) compared to 2-g (n = 94) daily doses (AUC([0-12]) 33.8 +/- 10.0 mg*h/L versus 30.1 +/- 9.7 mg*h/L, P =.20, respectively). About half the patients in both groups had AUC([0-12]) < 30 mg*h/L on days 3 and 5 posttransplant. On the other hand, there was significantly greater exposure on day 3 in the tacrolimus-treated patients receiving 3 g (n = 21) compared to 2 g (n = 29) daily (AUC([0-12]) 43.1 +/- 9.0 mg*h/L versus 36.8 +/- 11.1 mg*h/L, P =.016, respectively). On day 3 one (4.8%) patient receiving 3 g had an AUC([0-12]) of < 30 mg*h/L; whereas, eight (27.5%) receiving 2 g were below this level (P =.068). The AUC([0-12]) levels were not different on day 5. Conclusions. Loading with higher doses of mycophenolate mofetil results in greater exposure and a trend toward more patients in the therapeutic window within the first week for tacrolimus- but not for cyclosporine-treated patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method using gas chromatography-mass spectrometry (GC-MS) and solid-phase extraction (SPE) was developed for the determination of ajulemic acid (AJA), a non-psychoactive synthetic cannabinoid with interesting therapeutic potential, in human plasma. When using two calibration graphs, the assay linearity ranged from 10 to 750 ng/ml, and 750 to 3000 ng/ml AJA. The intra- and inter-day precision (R.S.D., %), assessed across the linear ranges of the assay, was between 1.5 and 7.0, and 3.6 and 7.9, respectively. The limit of quantitation (LOQ) was 10 ng/ml. The amount of AJA glucuronide was determined by calculating the difference in the AJA concentration before ("free AJA") and after enzymatic hydrolysis ("total AJA"). The present method was used within a clinical study on 21 patients suffering from neuropathic pain with hyperalgesia and allodynia. For example, plasma levels of 599.4+/-37.2 ng/ml (mean+/-R.S.D., n=9) AJA were obtained for samples taken 2 h after the administration of an oral dose of 20 mg AJA. The mean AJA glucuronide concentration at 2h was 63.8+/-127.9 ng/ml.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Indirect evidence indicates that morphine-3-glucuronide (M3G) may contribute significantly to the neuro-excitatory side effects (myoclonus and allodynia) of large-dose systemic morphine. To gain insight into the mechanism underlying M3G' s excitatory behaviors, We used fluo-3 fluorescence digital imaging techniques to assess the acute effects of M3G (5-500 muM) on the cytosolic calcium concentration ([Ca2+](CYT)) in cultured embryonic hippocampal neurones. Acute (3 min) exposure of neurones to M3G evoked [Ca2+](CYT) transients that were typically either (a) transient oscillatory responses characterized by a rapid increase in [Ca2+](CYT) oscillation amplitude that was sustained for at least similar to30 s or (b) a sustained increase in [Ca2+](CYT) that slowly recovered to baseline. Naloxone-pretreatment decreased the proportion of M3G-responsive neurones by 10%-25%, implicating a predominantly non-opioidergic mechanism. Although the naloxone-insensitive M3G-induced increases in [Ca2+](CYT) were completely blocked by N-methyl-D-aspartic acid (NMDA) antagonists and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (alphaamino-3-hydroxy-5-methyl-4-isoxazolepropiordc acid/ kainate antagonist), CNQX did not block the large increase in [Ca2+](CYT) evoked by NMDA (as expected), confirming that N13G indirectly activates the NMDA receptor. Additionally, tetrodotoxin (Na+ channel blocker), baclofen (gamma-aminobutyric acid, agonist), MVIIC (P/Q-type calcium channel blocker), and nifedipine (L-type calcium channel blocker) all abolished M3G-induced increases in [Ca2+](CYT), suggesting that M3G may produce its neuro-excitatory effects by modulating neurotransmitter release. However, additional characterization is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the development and prognosis of alcohol-induced liver disease (ALD) vary significantly with genetic background, identification of a genetic background-independent noninvasive ALD biomarker would significantly improve screening and diagnosis. This study explored the effect of genetic background on the ALD-associated urinary metabolome using the Ppara-null mouse model on two different backgrounds, C57BL/6 (B6) and 129/SvJ (129S), along with their wild-type counterparts. Reversed-phase gradient UPLC-ESI-QTOF-MS analysis revealed that urinary excretion of a number of metabolites, such as ethylsulfate, 4-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate, adipic acid, pimelic acid, xanthurenic acid, and taurine, were background-dependent. Elevation of ethyl-β-d-glucuronide and N-acetylglycine was found to be a common signature of the metabolomic response to alcohol exposure in wild-type as well as in Ppara-null mice of both strains. However, increased excretion of indole-3-lactic acid and phenyllactic acid was found to be a conserved feature exclusively associated with the alcohol-treated Ppara-null mouse on both backgrounds that develop liver pathologies similar to the early stages of human ALD. These markers reflected the biochemical events associated with early stages of ALD pathogenesis. The results suggest that indole-3-lactic acid and phenyllactic acid are potential candidates for conserved and pathology-specific high-throughput noninvasive biomarkers for early stages of ALD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of ethyl glucuronide (EtG), a marker of recent alcohol consumption, in serum with an optimized CZE assay is reported. The method uses a 0.1-mm id fused-silica capillary of 50 cm effective length that is coated with linear polyacrylamide, a pH 4.4 nicotinic acid/epsilon-aminocaproic acid (EACA) BGE, reversed polarity and indirect analyte detection. The assay is based on a 1:1 dilution of serum with deionized water and has LODs for EtG, lactate and acetate of 3.8 x 10(-7) M, 2.60 x 10(-6 )M and 2.18 x 10(-6 )M, respectively. Separation of EtG from endogenous macro- and microcomponents (anionic serum components of high and low concentration, respectively) and its quantification are shown to be possible for a wide range of lactate (stacker) and acetate (destacker) concentrations, macrocomponents that have an impact on the CZE behavior of EtG and that change after intake of ethanol. The assay has been successfully applied to the analysis of EtG, lactate and acetate in (i) sera of volunteers that ingested known amounts of alcohol and (ii) samples of patients that were classified (teetotalers and social drinkers vs. alcohol abusers) via analysis of carbohydrate-deficient transferrin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lorazepam (LOR) is a 3-hydroxy-1,4-benzodiazepine that is chiral and undergoes enantiomerization at room temperature. In humans, about 75% of the administered dose of LOR is excreted in the urine as its 30-glucuronide. CE-MS with negative ESI was used to confirm the presence of LOR-30-glucuronide in urines that stemmed from a healthy individual who ingested 1 or 2 mg LOR, whereas free LOR could be detected in extracts prepared from enzymatically hydrolyzed urines. As the 30-glucuronidation reaction occurs at the chiral center of the molecule, two diastereoisomers can theoretically be formed, molecules that can no longer interconvert. The stereoselective formation of LOR glucuronides in humans and in vitro was investigated. MEKC analysis of extracts of the nonhydrolyzed urines suggested the presence of the two different LOR glucuronides in the urine. The formation of the same two diastereoisomers was also observed in vitro employing incubations of LOR with human liver microsomes in the presence of uridine 5'-diphospho-glucuronic acid as coenzyme. The absence of other coenzymes excluded the formation of phase I or other phase II metabolites of LOR. Both results revealed a stereoselectivity, one diastereoisomer being formed in a higher amount than the other. After enzymatic hydrolysis using beta-glucuronidase, these peaks could not be detected any more. Instead, LOR was monitored. Analysis of the extracts prepared from enzymatically hydrolyzed urines by MEKC in the presence of 2-hydroxypropyl-beta-CD revealed the enantiomerization process of LOR (observation of two peaks of equal magnitude connected with a plateau zone). The data presented provide for the first time the evidence of the stereoselectivity of the LOR glucuronidation in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethyl glucuronide (EtG) is a marker of recent alcohol consumption. For the optimization of the analysis of EtG by CZE with indirect absorbance detection, the use of capillaries with permanent and dynamic wall coatings, the composition of the BGE, and various sample preparation procedures, including dilution with water, ultrafiltration, protein precipitation, and SPE, were investigated. Two validated screening assays for the determination of EtG in human serum, a CZE-based approach and an enzyme immunoassay (EIA), are described. The CZE assay uses a coated capillary, 2,4-dimethylglutaric acid as an internal standard, and a pH 4.65 BGE comprising 9 mM nicotinic acid, epsilon-aminocaproic acid and 10% v/v ACN. Proteins are removed via precipitation with ACN prior to analysis and the LOQ is 0.50 mg/L. The EIA is based upon commercial reagents which are promoted for the determination of urinary EtG. Krebs-Ringer solution containing 5% BSA is used as a calibration matrix. All samples are ultrafiltered prior to analysis of the ultrafiltrate on a Mira Plus analyzer. Assay calibration ranged between 0 and 2 mg/L and the upper reference limit was determined to be 0.05 mg/L. Both assays proved to be suitable for the analysis of samples from different individuals. For EtG levels above 0.50 mg/L, good agreement was observed for the comparison of the results of the two methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim To develop a population pharmacokinetic model for mycophenolic acid in adult kidney transplant recipients, quantifying average population pharmacokinetic parameter values, and between- and within-subject variability and to evaluate the influence of covariates on the pharmacokinetic variability. Methods Pharmacokinetic data for mycophenolic acid and covariate information were previously available from 22 patients who underwent kidney transplantation at the Princess Alexandra Hospital. All patients received mycophenolate mofetil 1 g orally twice daily. A total of 557 concentration-time points were available. Data were analysed using the first-order method in NONMEM (version 5 level 1.1) using the G77 FORTRAN compiler. Results The best base model was a two-compartment model with a lag time (apparent oral clearance was 271 h(-1), and apparent volume of the central compartment 981). There was visual evidence of complex absorption and time-dependent clearance processes, but they could not be successfully modelled in this study. Weight was investigated as a covariate, but no significant relationship was determined. Conclusions The complexity in determining the pharmacokinetics of mycophenolic acid is currently underestimated. More complex pharmacokinetic models, though not supported by the limited data collected for this study, may prove useful in the future. The large between-subject and between-occasion variability and the possibility of nonlinear processes associated with the pharmacokinetics of mycophenolic acid raise questions about the value of the use of therapeutic monitoring and limited sampling strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metabolic conjugation of exogenous and endogenous carboxylic acid substrates with endogenous glucuronic acid, mediated by the uridine diphosphoglucuronosyl transferase (UGT) superfamily of enzymes, leads to the formation of acyl glucuronide metabolites. Since the late 1970s, acyl glucuronides have been increasingly identified as reactive electrophilic metabolites, capable of undergoing three reactions: intramolecular rearrangement, hydrolysis, and intermolecular reactions with proteins leading to covalent drug-protein adducts. This essential dogma has been accepted for over a decade. The key question proposed by researchers, and now the pharmaceutical industry, is: does or can the covalent modification of endogenous proteins, mediated by reactive acyl glucuronide metabolites, lead to adverse drug reactions, perhaps idiosyncratic in nature? This review evaluates the evidence for acyl glucuronide-derived perturbation of homeostasis, particularly that which might result from the covalent modification of endogenous proteins and other macromolecules. Because of the availability of acyl glucuronides for test tube/in vitro experiments, there is now a substantial literature documenting their rearrangement, hydrolysis and covalent modification of proteins in vitro. It is certain from in vitro experiments that serum albumin, dipeptidyl peptidase IV, tubulin and UGTs are covalently modified by acyl glucuronides. However, these in vitro experiments have been specifically designed to amplify any interference with a biological process in order to find biological effects. The in vivo situation is not at all clear. Certainly it must be concluded that all humans taking carboxylate drugs that form reactive acyl glucuronides will form covalent drug-protein adducts, and it must also be concluded that this in itself is normally benign. However, there is enough in vivo evidence implicating acyl glucuronides, which, when backed up by in vivo circumstantial and documented in vitro evidence, supports the view that reactive acyl glucuronides may initiate toxicity/immune responses. In summary, though acyl glucuronide-derived covalent modification of endogenous macromolecules is well-defined, the work ahead needs to provide detailed links between such modification and its possible biological consequences. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.