970 resultados para ATTACHMENT PROTEIN (G)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Residents from high level (nursing homes) and low-level care facilities (hostel) being served the three common diet texture modifications (full diet, soft-minced diet and pureed diet) were assessed. Individual plate waste was estimated at three meals on one day. Fifty-six males and 156 females, mean age 82.9+/-9.5 (SD) years, of which 139 lived in nursing homes (NH) and 76 in hostels (H) were included. Mean total energy served from meals was 5.3 MJ/day, 5.1 to 5.6 MJ/day, 95% confidence intervals (CI), in NH which was less than in H, 5.9 MJ/day (CI 5.6 to 6.2 MJ/day) (P=0.007). Protein and calcium intakes were lower in NH, 44.5g (CI 41.5 to 47.5g), 359.0mg (CI 333.2 to 384.8mg), versus 50.5g (CI 46.6 to 54.3g), 480.5mg (CI 444.3 to 516.7mg) in H (P=0.017, P<0.001 respectively). There was no difference in nutrient/energy ratios, except for protein/energy, which was higher in NH 11.7 (CI 11.3 to 12.2) than in H 9.8 (CI 9.4 to 10.3) (P<0.001). Ability to self-feed had no significant effect on nutrient intakes in NH. The self fed group (N=63) had the following nutrient intakes: energy 4.0 MJ (CI 3.6 to 4.3 MJ), protein 44.6g (CI 40.3 to 48.9g), calcium 356.9mg (CI 316.3 to 397.4mg), fibre 14.9g (CI 13.2 to 16.5g). The assisted group (N=64) had the following nutrient intakes: energy 3.9MJ (CI 3.6 to 4.2MJ), protein 46.0g (CI 40.7 to 49.6), calcium 361.9mg (CI 327.8 to 396.1mg), fibre 14.9g (CI 13.2 to 16.1g). Of NH classified as eating impaired, 36% received no assistance with feeding and had lower intakes of protein 37.8g (CI 33.0 to 42.1g) compared to those receiving some assistance 46.1g (CI 41.3 to 50.9g) (P=0.026). Reduced energy intake accounted for the differences in nutrient intakes between nursing homes and hostels, except for protein. Strategies to effectively monitor nutrient intakes and to identify those with eating impairment are required in order to ensure adequate nutrition of residents in nursing homes and hostels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research across various countries and relationship contexts suggests that attachment anxiety and avoidance are associated with people’s prosocial feelings, tendencies, and behaviors (e.g., Gillath et al., 2005; Karantzas, Evans, & Foddy, 2007). In the present paper we extend the two dimensional model of attachment to include a series of nested facets. Doing so allowed us to examine whether the multifaceted nested factor model provides a better explanation of the associations between attachment and the components of prosocial personality as compared to the bi-factor model (attachment anxiety and avoidance). Three hundred and eighty participants, aged 18 to 33 years completed self-report measures of adult attachment and prosocial personality. Data were fitted to various models – as expected the nested model provided a better fit to the data and explained a significantly larger proportion of the variance in prosocial tendencies than the bi-factor model. The attachment facets were found to make distinct contributions to prosocial personality beyond the broad attachment dimensions (e.g., the preoccupied facet was uniquely associated with personal distress). Implications for the revised attachment structure across various prosocial contexts are discussed, as are the limitations of using the Experience in Close Relationships Scale (ECR; Brennan et al., 1998) to test a multifaceted attachment model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMP-activated protein kinase (AMPK) has recently emerged as a key signaling protein in skeletal muscle, coordinating the activation of both glucose and fatty acid metabolism in response to increased cellular energy demand. To determine whether AMPK signaling may also regulate gene transcription in muscle, rats were given a single subcutaneous injection (1 mg/g) of the AMP analog 5-aminoimidazole-4-carboxamide-1-&szlig;-D-ribonucleoside (AICAR). AICAR injection activated (P < 0.05) AMPK-α2 (~2.5-fold) and transcription of the uncoupling protein-3 (UCP3, ~4-fold) and hexokinase II (HKII, ~10-fold) genes in both red and white skeletal muscle. However, AICAR injection also elicited (P < 0.05) an acute drop (60%) in blood glucose and a sustained (2-h) increase in blood lactate, prompting concern regarding the specificity of AICAR on transcription. To maximize AMPK activation in muscle while minimizing potential systemic counterregulatory responses, a single-leg arterial infusion technique was employed in fully conscious rats. Relative to saline-infused controls, single-leg arterial infusion of AICAR (0.125, 0.5, and 2.5 µg · g-1 · min-1 for 60 min) induced a dose-dependent increase (2- to 4-fold, P < 0.05) in UCP3 and HKII transcription in both red and white skeletal muscle. Importantly, AICAR infusion activated transcription only in muscle from the infused leg and had no effect on blood glucose or lactate levels. These data provide evidence that AMPK signaling is linked to the transcriptional regulation of select metabolic genes in skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncoupling protein 3 (UCP3) is a muscle mitochondrial protein believed to uncouple the respiratory chain, producing heat and reducing aerobic ATP production. Our aim was to quantify and compare the UCP3 protein levels in type I, IIa and IIx skeletal muscle fibers of endurance-trained (Tr) and healthy untrained (UTr) individuals. UCP3 protein content was quantified using Western blot and immunofluorescence. Skeletal muscle fiber type was determined by both an enzymatic ATPase stain and immunofluorescence. UCP3 protein expression measured in skeletal muscle biopsies was 46% lower ( P=0.01) in the Tr compared to the UTr group. UCP3 protein expression in the different muscle fibers was expressed as follows; IIx&gt;IIa&gt;I in the fibers for both groups ( P<0.0167) but was lower in all fiber types of the Tr when compared to the UTr subjects ( P<0.001). Our results show that training status did not change the skeletal muscle fiber hierarchical UCP3 protein expression in the different fiber types. However, it affected UCP3 content more in type I and type IIa than in the type IIx muscle fibers. We suggest that this decrease may be in relation to the relative improvement in the antioxidant defense systems of the skeletal muscle fibers and that it might, as a consequence, participate in the training induced improvement in mechanical efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During spore formation in Bacillus subtilis, cell division occurs at the cell pole and is believed to require essentially the same division machinery as vegetative division. Intriguingly, although the cell division protein DivIB is not required for vegetative division at low temperatures, it is essential for efficient sporulation under these conditions. We show here that at low temperatures in the absence of DivIB, formation of the polar septum during sporulation is delayed and less efficient. Furthermore, the polar septa that are complete are abnormally thick, containing more peptidoglycan than a normal polar septum. These results show that DivIB is specifically required for the efficient and correct formation of a polar septum. This suggests that DivIB is required for the modification of sporulation septal peptidoglycan, raising the possibility that DivIB either regulates hydrolysis of polar septal peptidoglycan or is a hydrolase itself. We also show that, despite the significant number of completed polar septa that form in this mutant, it is unable to undergo engulfment. Instead, hydrolysis of the peptidoglycan within the polar septum, which occurs during the early stages of engulfment, is incomplete, producing a similar phenotype to that of mutants defective in the production of sporulation-specific septal peptidoglycan hydrolases. We propose a role for DivIB in sporulation-specific peptidoglycan remodelling or its regulation during polar septation and engulfment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The earliest stage in bacterial cell division is the formation of a ring, composed of the tubulin-like protein FtsZ, at the division site. Tight spatial and temporal regulation of Z-ring formation is required to ensure that division occurs precisely at midcell between two replicated chromosomes. However, the mechanism of Z-ring formation and its regulation in vivo remain unresolved. Here we identify the defect of an interesting temperature-sensitive ftsZ mutant (ts1) of Bacillus subtilis. At the nonpermissive temperature, the mutant protein, FtsZ(Ts1), assembles into spiral-like structures between chromosomes. When shifted back down to the permissive temperature, functional Z rings form and division resumes. Our observations support a model in which Z-ring formation at the division site arises from reorganization of a long cytoskeletal spiral form of FtsZ and suggest that the FtsZ(Ts1) protein is captured as a shorter spiral-forming intermediate that is unable to complete this reorganization step. The ts1 mutant is likely to be very valuable in revealing how FtsZ assembles into a ring and how this occurs precisely at the division site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topotecan (TPT) is a semisynthetic water-soluble derivative of camptothecin (CPT) used as second-line therapy in patients with metastatic ovarian carcinoma, small cell lung cancer, and other malignancies. However, both doselimiting toxicity and tumor resistance hinder the clinical use of TPT. The mechanisms for resistance to TPT are not fully defined, but increased efflux of the drug by multiple drug transporters including P-glycoprotein (PgP), multidrug resistance associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) from tumor cells has been highly implicated. This study aimed to investigate whether overexpression of human MRP4 rendered resistance to TPT by examining the cytotoxicity profiles using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide (MTT) assay and cellular accumulation of TPT in HepG2 cells stably overexpressing MRP4. Two kinds of cell lines, HepG2 with insertion of an empty vector plasmid (V/HepG2), HepG2 cells stably expressing MRP4 (MRP4/HepG2), were exposed to TPT for 4 or 48 hr in the absence or presence of various MRP4 inhibitors including DL-buthionine-(S,R)-sulphoximine (BSO), diclofenac, celecoxib, or MK-571. The intracellular accumulation of TPT and paclitaxel (a PgP substrate) by V/HepG2 and MRP4/HepG2 cells was determined by incubation of TPT with the cells and the amounts of the drug in cells were determined by validated HPLC methods. The study demonstrated that MRP4 conferred a 12.03- and 6.86-fold resistance to TPT in the 4- and 48-hr drug-exposure MTT assay, respectively. BSO, MK-571, celecoxib, or diclofenac sensitised MRP4/HepG2 cells to TPT cytotoxicity and partially reversed MRP4-mediated resistance to TPT. In addition, the accumulation of TPT was significantly reduced in MRP4/HepG2 cells compared to V/HepG2 cells, and one-binding site model was found the best fit for the MRP4-mediated efflux of TPT, with an estimated Km of 1.66 mM and Vmax of 0.341 ng/min/106 cells. Preincubation of MRP4/HepG2 cells with BSO (200 μM) for 24 hr, celecoxib (50 mM), or MK-571 (100 mM) for 2 hr significantly increased the accumulation of TPT over 10 min in MRP4/HepG2 cells by 28.0%, 37.3% and 32.5% (P < 0.05), respectively. By contrast, there was no significant difference in intracellular accumulation of paclitaxel in V/HepG2 and MRP4/HepG2 cells over 120 min. MRP4 also rendered resistance to adefovir dipivoxil (bis-POMPMEA) and methotrexate, two reported MRP4 substrates. MRP4 did not exhibit any significant resistance to other model drugs including vinblastine, vincristine, etoposide, carboplatin, cyclosporine and paclitaxel in both long (48 hr) and short (4 hr) drug-exposure MTT assays. These findings indicate that MRP4 confers resistance to TPT and TPT is the substrate for MRP4. Further studies are needed to explore the role of MRP4 in resistance to, toxicity and pharmacokinetics of TPT in cancer patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the intracellular distribution and internalization kinetics of the granulocyte colony-stimulating factor receptor (G-CSF-R) in living cells using fusion constructs of wild-type or mutant G-CSF-R and enhanced green fluorescent protein (EGFP). Under steady-state conditions the G-CSF-R localized predominantly to the Golgi apparatus, late endosomes, and lysosomes, with only low expression on the plasma membrane, resulting from spontaneous internalization. Internalization of the G-CSF-R was significantly accelerated by addition of G-CSF. This ligand-induced switch from slow to rapid internalization required the presence of G-CSF-R residue Trp650, previously shown to be essential for its signaling ability. Both spontaneous and ligand-induced internalization depended on 2 distinct amino acid stretches in the G-CSF-R COOH-terminus: 749-755, containing a dileucine internalization motif, and 756-769. Mutation of Ser749 at position –4 of the dileucine motif to Ala significantly reduced the rate of ligand-induced internalization. In contrast, mutation of Ser749 did not affect spontaneous G-CSF-R internalization, suggesting the involvement of a serine-threonine kinase specifically in ligand-accelerated internalization of the G-CSF-R. COOH-terminal truncation mutants of G-CSF-R, found in severe congenital neutropenia, lack the internalization motifs and were completely defective in both spontaneous and ligand-induced internalization. As a result, these mutants showed constitutively high cell-surface expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Somatostatin, originally identified as a peptide involved in neurotransmission, functions as an inhibitor of multiple cellular responses, including hormonal secretion and proliferation. Somatostatin acts through activation of G-protein-coupled receptors of which five subtypes have been identified. We have recently established that human CD34/c-kit expressing hematopoietic progenitors and acute myeloid leukemia (AML) cells exclusively express SSTR2. A major mechanism implicated in the antiproliferative action of somatostatin involves activation of the SH2 domain-containing protein tyrosine phosphatase SHP-1. While 0.1-1 x 10(-9) M of somatostatin, or its synthetic stable analog octreotide, can inhibit G-CSF-induced proliferation of AML cells, little or no effects are seen on GM-CSF- or IL-3-induced responses.
MATERIALS AND METHODS: To study the mechanisms underlying the antiproliferative responses of myeloblasts to somatostatin, clones of the IL-3-dependent murine cell line 32D that stably express SSTR2 and G-CSF receptors were generated. RESULTS: Similar to AML cells, octreotide inhibited G-CSF-induced but not IL-3-induced proliferative responses of 32D[G-CSF-R/SSTR2] cells. Somatostatin induced SHP-1 activity and inhibited G-CSF-induced, but not IL-3-induced, activation of the signal transducer and activator of transcription proteins STAT3 and STAT5.
CONCLUSION: Based on these data and previous results, we propose a model in which recruitment and activation of the tyrosine phosphatase SHP-1 by SSTR2 is involved in the selective negative action of somatostatin on G-CSF-R signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy conservation directed at accelerating body fat recovery (or catch-up fat) contributes to obesity relapse after slimming and to excess fat gain during catch-up growth after malnutrition. To investigate the mechanisms underlying such thrifty metabolism for catch-up fat, we tested whether during refeeding after caloric restriction rats exhibiting catch-up fat driven by suppressed thermogenesis have diminished skeletal muscle phosphatidylinositol-3-kinase (PI3K) activity or AMP-activated protein kinase (AMPK) signaling—two pathways required for hormone-induced thermogenesis in ex vivo muscle preparations. The results show that during isocaloric refeeding with a low-fat diet, at time points when body fat, circulating free fatty acids, and intramyocellular lipids in refed animals do not exceed those of controls, muscle insulin receptor substrate 1-associated PI3K activity (basal and in vivo insulin-stimulated) is lower than that in controls. Isocaloric refeeding with a high-fat diet, which exacerbates the suppression of thermogenesis, results in further reductions in muscle PI3K activity and in impaired AMPK phosphorylation (basal and in vivo leptin-stimulated). It is proposed that reduced skeletal muscle PI3K/AMPK signaling and suppressed thermogenesis are interdependent. Defective PI3K or AMPK signaling will reduce the rate of substrate cycling between de novo lipogenesis and lipid oxidation, leading to suppressed thermogenesis, which accelerates body fat recovery and furthermore sensitizes skeletal muscle to dietary fat-induced impairments in PI3K/AMPK signaling.—Summermatter, S., Mainieri, D., Russell, A. P., Seydoux, J., Montani, J. P., Buchala, A., Solinas, G., Dulloo, A. G. Thrifty metabolism that favors fat storage after caloric restriction: a role for skeletal muscle phosphatidylinositol-3-kinase activity and AMP-activated protein kinase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day x 3 days; maintenance phase, 5 g/day x 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants (P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Merozoite surface protein 8 (MSP8) has shown promise as a vaccine candidate in the Plasmodium yoelii rodent malaria model and has a proposed role in merozoite invasion of erythrocytes. However, the temporal expression and localisation of MSP8 are unusual for a merozoite antigen. Moreover, in Plasmodium falciparum the MSP8 gene could be disrupted with no apparent effect on in vitro growth. To address the in vivo function of full-length MSP8, we truncated MSP8 in the rodent parasite Plasmodium berghei. PbΔMSP8 disruptant parasites displayed a normal blood-stage growth rate but no increase in reticulocyte preference, a phenomenon observed in P. yoelii MSP8 vaccinated mice. Expression levels of erythrocyte surface antigens were similar in P. berghei wild-type and PbΔMSP8-infected erythrocytes, suggesting that a parasitophorous vacuole function for MSP8 does not involve global trafficking of such antigens. These data demonstrate that a full-length membrane-associated form of PbMSP8 is not essential for blood-stage growth.