999 resultados para APPENDAGE DEVELOPMENT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of wing patterning involves precise molecular mechanisms to establish an organizing center at the dorsal–ventral boundary, which functions to direct the development of the Drosophila wing. We report that misexpression of dLMO, a Drosophila LIM-only protein, in specific patterns in the developing wing imaginal disc, disrupts the dorsal–ventral (D-V) boundary and causes errors in wing patterning. When dLMO is misexpressed along the anterior–posterior boundary, extra wing outgrowth occurs, similar to the phenotype seen when mutant clones lacking Apterous, a LIM homeodomain protein known to be essential for normal D-V patterning of the wing, are made in the wing disc. When dLMO is misexpressed along the D-V boundary in third instar larvae, loss of the wing margin is observed. This phenotype is very similar to the phenotype of Beadex, a long-studied dominant mutation that we show disrupts the dLMO transcript in the 3′ untranslated region. dLMO normally is expressed in the wing pouch of the third instar wing imaginal disc during patterning. A mammalian homolog of dLMO is expressed in the developing limb bud of the mouse. This indicates that LMO proteins might function in an evolutionarily conserved mechanism involved in patterning the appendages.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several organs of the embryo develop as appendages of the ectoderm, the outermost layer of the embryo. These organs include hair follicles, teeth and mammary glands, which all develop as a result of reciprocal tissue interactions between the surface epithelium and the underlying mesenchyme. Several signalling molecules regulate ectodermal organogenesis the most important ones being Wnts, fi broblast growth factors (Fgfs), transforming growth factor -βs (Tgf-βs) including bone morphogenetic proteins (Bmps), hedgehogs (Hhs), and tumour necrosis factors (Tnfs). This study focuses on ectodysplasin (EDA), a signalling molecule of the TNF superfamily. The effects of EDA are mediated by its receptor EDAR, an intracellular adapter protein EDARADD, and downstream activation of the transcription factor nuclear factor kappa-B (NF-кB). Mice deficient in Eda (Tabby mice), its receptor Edar (downless mice) or Edaradd (crinkled mice) show identical phenotypes characterised by defective ectodermal organ development. These mouse mutants serve as models for the human syndrome named hypohidrotic ectodermal dysplasia (HED) that is caused by mutations either in Eda, Edar or Edaradd. The purpose of this study was to characterize the ectodermal organ phenotype of transgenic mice overexpressing of Eda (K14-Eda mice), to study the role of Eda in ectodermal organogenesis using both in vivo and in vitro approaches, and to analyze the potential redundancy between the Eda pathway and other Tnf pathways. The results suggest that Eda plays a role during several stages of ectodermal organ development from initiation to differentiation. Eda signalling was shown to regulate the initiation of skin appendage development by promoting appendageal cell fate at the expense of epidermal cell fate. These effects of Eda were shown to be mediated, at least in part, through the transcriptional regulation of genes that antagonized Bmp signalling and stimulated Shh signalling. It was also shown that Eda/Edar signalling functions redundantly with Troy, which encodes a related TNF receptor, during hair development. This work has revealed several novel aspects of the function of the Eda pathway in hair and tooth development, and also suggests a previously unrecognized role for Eda in mammary gland development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The skin is a complex stratified organ which acts not only as a permeability barrier and defense against external agents, but also has essential thermoregulatory, sensory and metabolic functions. Due to its high versatility and activity, the skin undergoes continuous self-renewal to repair damaged tissue and replace old cells. Consequently, the skin is a reservoir for adult stem cells of different embryonic origins. Skin stem cell populations reside in the adult hair follicle, sebaceous gland, dermis and epidermis. However, the origin of most of the stem cell populations found in the adult epidermis is still unknown. Far more unknown is the embryonic origin of other stem cells that populate the other layers of this tissue. In this review we attempt to clarify the emergence, structure, markers and embryonic development of diverse populations of stem cells from the epidermis, dermis and related appendages such as the sebaceous gland and hair follicle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beyond the physiological and behavioural, differences in appendage morphology between the workers and queens of Apis mellifera are pre-eminent. The hind legs of workers, which are highly specialized pollinators, deserve special attention. The hind tibia of worker has an expanded bristle-free region used for carrying pollen and propolis, the corbicula. In queens this structure is absent. Although the morphological differences are well characterized, the genetic inputs driving the development of this alternative morphology remain unknown. Leg phenotype determination takes place between the fourth and fifth larval instar and herein we show that the morphogenesis is completed at brown-eyed pupa. Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from hind leg imaginal discs of pre-pupal honeybees of both castes we present a list of 200 differentially expressed genes. Notably, there are castes preferentially expressed cuticular protein genes and members of the P450 family. We also provide results of qPCR analyses determining the developmental transcription profiles of eight selected genes, including abdominal-A, distal-less and ultrabithorax (Ubx), whose roles in leg development have been previously demonstrated in other insect models. Ubx expression in workers hind leg is approximately 25 times higher than in queens. Finally, immunohistochemistry assays show that Ubx localization during hind leg development resembles the bristles localization in the tibia/basitarsus of the adult legs in both castes. Our data strongly indicate that the development of the hind legs diphenism characteristic of this corbiculate species is driven by a set of caste-preferentially expressed genes, such as those encoding cuticular protein genes, P450 and Hox proteins, in response to the naturally different diets offered to honeybees during the larval period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Foxi3 is a member of the large forkhead box family of transcriptional regulators, which have a wide range of biological activities including manifold developmental processes. Heterozygous mutation in Foxi3 was identified in several hairless dog breeds characterized by sparse fur coat and missing teeth. A related phenotype called hypohidrotic ectodermal dysplasia (HED) is caused by mutations in the ectodysplasin (Eda) pathway genes. RESULTS Expression of Foxi3 was strictly confined to the epithelium in developing ectodermal appendages in mouse embryos, but no expression was detected in the epidermis. Foxi3 was expressed in teeth and hair follicles throughout embryogenesis, but in mammary glands only during the earliest stages of development. Foxi3 expression was decreased and increased in Eda loss- and gain-of-function embryos, respectively, and was highly induced by Eda protein in embryonic skin explants. Also activin A treatment up-regulated Foxi3 mRNA levels in vitro. CONCLUSIONS Eda and activin A were identified as upstream regulators of Foxi3. Foxi3 is a likely transcriptional target of Eda in ectodermal appendage placodes suggesting that HED phenotype may in part be produced by compromised Foxi3 activity. In addition to hair and teeth, Foxi3 may have a role in nail, eye, and mammary, sweat, and salivary gland development.