38 resultados para APLASIA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary or late graft failure has been defined as the development of inadequate marrow function after initial engraftment has been achieved. We describe a case of profound marrow aplasia occurring 13 years after sibling allogeneic bone marrow transplantation for chronic myeloid leukaemia (CML) in first chronic phase. Although the patient remained a complete donor chimera, thereby suggesting that an unselected infusion of donor peripheral blood stem cells (PBSC) or bone marrow might be indicated, the newly acquired aplasia was thought to be immune in aetiology and some immunosuppression was therefore considered appropriate. Rapid haematological recovery was achieved after the infusion of unselected PBSC from the original donor following conditioning with anti-thymocyte globulin (ATG).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Aplasia of the mullerian ducts leads to absence of the uterine corpus, uterine cervix, and upper (superior) vagina. Patients with mullerian aplasia (MA) often exhibit additional clinical features such as renal, vertebral and cardiac defects. A number of different syndromes have been associated with MA, and in most cases its aetiology remains poorly understood. Objective and methods: 14 syndromic patients with MA and 46, XX G-banded karyotype were screened for DNA copy number changes by similar to 1 Mb whole genome bacterial artificial chromosome (BAC) array based comparative genomic hybridisation (CGH). The detected alterations were validated by an independent method and further mapped by high resolution oligo-arrays. Results: Submicroscopic genomic imbalances affecting the 1q21.1, 17q12, 22q11.21, and Xq21.31 chromosome regions were detected in four probands. Presence of the alterations in the normal mother of one patient suggests incomplete penetrance and/or variable expressivity. Conclusion: 4 of the 14 patients (29%) were found to have cryptic genomic alterations. The imbalances on 22q11.21 support recent findings by us and others that alterations in this chromosome region may result in impairment of mullerian duct development. The remaining imbalances indicate involvement of previously unknown chromosome regions in MA, and point specifically to LHX1 and KLHL4 as candidate genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure red cell aplasia (PRCA) is a disease with important relationships to autoimmune mechanisms. Although some autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus, have been associated with PRCA, until this point no studies have described the association between PRCA and primary antiphospholipid syndrome (APS). This is the first case report of PRCA associated with primary APS in a 39-year-old man with acute heart failure secondary to an anaemic condition that was diagnosed as pure red cell aplasia. The patient was later diagnosed with retinal artery and vein thromboses and bilateral deep venous thromboses of the femoral and popliteal veins. The most common causes of PRCA and other thrombophilias were ruled out in this investigation through complementary tests. This association with APS adds a new possibility to the study of PRCA pathophysiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibroblast growth factors (FGFs) are potent mitogens, morphogens, and inducers of angiogenesis, and FGF signaling governs the genesis of diverse tissues and organs from the earliest stages. With such fundamental embryonic and homeostatic roles, it follows that aberrant FGF signaling underlies a variety of diseases. Pathological modifications to FGF expression are known to cause salivary gland aplasia and autosomal dominant hypophosphatemic rickets, while mutations in FGF receptors (FGFRs) result in a range of skeletal dysplasias. Anomalous FGF signaling is also associated with cancer development and progression. Examples include the overexpression of FGF2 and FGF6 in prostate cancer, and FGF8 overexpression in breast and prostate cancers. Alterations in FGF signaling regulators also impact tumorigenesis, which is exemplified by the down-regulation of Sprouty 1, a negative regulator of FGF signaling, in prostate cancer. In addition, several FGFRs are mutated in human cancers (including FGFR2 in gastric cancer and FGFR3 in bladder cancer). We recently identified intriguing alterations in the FGF pathway in a novel model of bladder carcinoma that consists of a parental cell line (TSU-Pr1/T24) and two sublines with increasing metastatic potential (TSU-Pr1-B1 and TSU-Pr1-B2), which were derived successively through in vivo cycling. It was found that the increasingly metastatic sublines (TSU-Pr1-B1 and TSU-Pr1-B2) had undergone a mesenchymal to epithelial transition. FGFR2IIIc expression, which is normally expressed in mesenchymal cells, was increased in the epithelial-like TSU-Pr1-B1 and TSU-Pr1-B2 sublines and FGFR2 knock-down was associated with the reversion of cells from an epithelial to a mesenchymal phenotype. These observations suggest that modified FGF pathway signaling should be considered when studying other cancer types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The permanent mammalian kidney (metanephros) develops as a result of complex reciprocal tissue interactions between a ureteric epithelium and the renal mesenchyme. The overall goal of the research in this thesis was to gain data that will eventually help in elucidating the formation of congenital renal malformations. The experiments in my thesis aimed to reveal the mechanisms by which Notch, Wnt and GDNF/Ret signalling pathways regulate the development of functional kidney. The function of Notch pathway was studied by a transgenic mouse model, where it was shown that overactivation of Notch signalling disturbs kidney development and alters the expression of Gdnf and Ret/GFRa1. This indicates that Notch signalling interplays with GDNF/Ret in the regulation of the primary ureteric budding and its subsequent branching. The data also suggested that strict spatio-temporal regulation of these two pathways is required for determination of ureteric tip-identity, which appeared to be crucial for the branch formation. The function of Wnt signalling in the ureteric morphogenesis was studied by in vivo and in vitro methods to show that a canonical pathway is required for ureteric branching. Stabilisation and deletion of the canonical pathway mediator, b-catenin specifically in the ureteric epithelium result in renal aplasia/hypodysplasia. These defects originate from severe blockage of ureteric branching due to the disrupted Ret signalling. Consequently, ureteric tip specific markers are lost and ureteric stalk identity is expanded throughout the whole epithelium. Thus, the data demonstrates that the Wnt/b-catenin pathway plays an essential role in the patterning and branching of the ureteric epithelium. A novel in vitro method was generated and utilised in nephron induction studies to reveal the mechanisms through which nephrogenesis is induced. Transient GSK3 inhibition results in stabilisation of b-catenin in the isolated renal mesenchyme, which efficiently triggers nephron formation. Also genetic stabilisation of b-catenin specifically in the mesenchyme results in spontaneous nephrogenesis. The results show that activation of the canonical Wnt pathway is sufficient to initiate nephrogenesis, and suggest that this pathway mediates the nephron induction in murine kidney mesenchymes. Taken together, this thesis demonstrates Notch and Wnt signalling pathways as novel regulators of ureteric branching morphogenesis, and that activation of the canonical Wnt pathway is sufficient for nephron induction. The studies also indicate that the Notch and Wnt pathways cross-talk with GDNF/Ret signalling in the patterning of ureteric epithelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intraflagellar transport (IFT) depends on two evolutionarily conserved modules, subcomplexes A (IFT-A) and B (IFT-B), to drive ciliary assembly and maintenance. All six IFT-A components and their motor protein, DYNC2H1, have been linked to human skeletal ciliopathies, including asphyxiating thoracic dystrophy (ATD; also known as Jeune syndrome), Sensenbrenner syndrome, and Mainzer-Saldino syndrome (MZSDS). Conversely, the 14 subunits in the IFT-B module, with the exception of IFT80, have unknown roles in human disease. To identify additional IFT-B components defective in ciliopathies, we independently performed different mutation analyses: candidate-based sequencing of all IFT-B-encoding genes in 1,467 individuals with a nephronophthisis-related ciliopathy or whole-exome resequencing in 63 individuals with ATD. We thereby detected biallelic mutations in the IFT-B-encoding gene IFT172 in 12 families. All affected individuals displayed abnormalities of the thorax and/or long bones, as well as renal, hepatic, or retinal involvement, consistent with the diagnosis of ATD or MZSDS. Additionally, cerebellar aplasia or hypoplasia characteristic of Joubert syndrome was present in 2 out of 12 families. Fibroblasts from affected individuals showed disturbed ciliary composition, suggesting alteration of ciliary transport and signaling. Knockdown of ift172 in zebrafish recapitulated the human phenotype and demonstrated a genetic interaction between ift172 and ift80. In summary, we have identified defects in IFT172 as a cause of complex ATD and MZSDS. Our findings link the group of skeletal ciliopathies to an additional IFT-B component, IFT172, similar to what has been shown for IFT-A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maintenance of breeding efficiency and high semen quality is essential for reproductive success in farm animals. Early recognition of possible inheritable factors causing infertility requires constant attention. This thesis focuses on describing different manifestations of impaired spermatogenesis, their impact on fertility and partly also their incidence in populations. The reasons for spermatogenic failure are various. An interruption of germ cell differentiation, spermatogenic arrest, can lead to infertility. The incidence of azoospermia was investigated in the 1996 2005 survey of Finnish AI and farm breeding boars. We focused on the diagnosis, testicular morphometry and the possible reasons for the condition. The incidence of azoospermia was significantly higher in Yorkshire boars than in the Landrace breed. The most common diagnosis in Yorkshire boars was germ cell arrest at the primary spermatocyte level. The second most frequent diagnosis in Yorkshire boars was segmental aplasia of the Wolffian ducts with idiopathic epididymal obstruction. Other reasons for azoospermia were infrequent. In the second study we investigated the incidence of two relatively well-defined specific sperm defects in Finnish Yorkshire and Landrace boars during the same survey, the immotile short-tail sperm (ISTS) defect and the knobbed acrosome (KA) defect. In the Finnish Yorkshire boars the inherited ISTS defect, and the probably inherited KA defect, were important causes of infertility during 1996 2005. The ISTS defect was found in 7.6% and the KA defect in 0.8% of the Yorkshire boars. No Landrace boars were diagnosed with either of these two defects. In the third study we described a new sterilizing sperm defect in an oligoasthenoterazoospermic bull. Because of its morphological characteristics this defect was termed the multinuclear-multiflagellar sperm (MNMFS) defect. The number of Sertoli cells in the seminiferous tubuli was highly increased in the MNMFS bull compared with the number in normal bulls. In the following two studies we used a combined approach of fluorescence in situ hybridization (FISH), flow cytometry and morphometric studies to provide information on the cytogenetic background of macrocephalic bull spermatozoa. We described cellular features of diploid spermatozoa and compared the failures in the first and second meiotic divisions. In the last study we describe how the transplantation of testicular cells was used to determine whether spermatogonia derived from donor animals are able to colonize and produce motile spermatozoa in immune-competent unrelated boars suffering the ISTS defect. Transplantation resulted in complete focal spermatogenesis, indicated by the appearance of motile spermatozoa and confirmed by genotyping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ninety-one patients were studied serially for chimeric status following allogeneic stem cell transplantation (SCT) for severe aplastic anaemia (SAA) or Fanconi Anaemia (FA). Short tandem repeat polymerase chain reaction (STR-PCR) was used to stratify patients into five groups: (A) complete donor chimeras (n = 39), (B) transient mixed chimeras (n = 15) (C) stable mixed chimeras (n = 18), (D) progressive mixed chimeras (n = 14) (E) recipient chimeras with early graft rejection (n = 5). As serial sampling was not possible in Group E, serial chimerism results for 86 patients were available for analysis. The following factors were analysed for association with chimeric status: age, sex match, donor type, aetiology of aplasia, source of stem cells, number of cells engrafted, conditioning regimen, graft-versus-host disease (GvHD) prophylaxis, occurrence of acute and chronic GvHD and survival. Progressive mixed chimeras (PMCs) were at high risk of late graft rejection (n = 10, P <0.0001). Seven of these patients lost their graft during withdrawal of immunosuppressive therapy. STR-PCR indicated an inverse correlation between detection of recipient cells post-SCT and occurrence of acute GvHD (P = 0.008). PMC was a bad prognostic indicator of survival (P = 0.003). Monitoring of chimeric status during cyclosporin withdrawal may facilitate therapeutic intervention to prevent late graft rejection in patients transplanted for SAA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a single centre experience of eight consecutive patients with relapsed or refractory Ph+ ALL treated with the FLAG/idarubicin regimen followed by BMT or PBSCT. Following FLAG/idarubicin, one achieved a partial response and seven CR. All patients subsequently received allogeneic transplants: one sibling BMT, three matched unrelated (MUD) BMT and four sibling PBSCT. Two patients received second transplants with PBSC from their original BM donors following FLA/Ida with no further conditioning. Three patients are alive in CR 9, 24 and 32 months after transplant. Seven of eight patients had a cytogenetic response following FLAG/Ida induction and one of seven became bcr-abl negative. All eight patients had a complete cytogenetic response following transplant. Four of five assessable patients became p190 bcr-abl negative after transplant; three of these subsequently relapsed. Both patients with the p210 bcr-abl transcript remained bcr-abl positive in CR after transplant. FLAG/Ida was well tolerated and appears to be effective in inducing remission in relapsed Ph+ ALL. The use of FDR-containing chemotherapy without further conditioning prior to PBSCT deserves further study in heavily pre-treated patients and, in patients with relapsed ALL following BMT, may be a safer option than DLI (donor lymphocyte infusion) by avoiding the associated risk of aplasia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Donor lymphocyte infusions (DLI) have been shown to enhance the graft-versus-leukaemia (GVL) effect and induce haematological and molecular remission in patients with relapsed CML following allogeneic bone marrow transplantation (BMT). The potent donor cell-mediated cytolysis following DLI may lead to a short period of aplasia before the re-establishment of donor haematopoiesis. The absence of detectable donor cells in patients prior to DLI infusion may result in permanent aplasia in certain patients. We report on four patients who relapsed 1, 3, 6.5 and 7 years post-BMT for chronic phase CML and were treated with DLI from their original BMT donor. Polymorphic short tandem repeats (STRs) were used to assess haematological chimaerism both prior to and following DLI. At the time of relapse, STR-PCR indicated the presence of donor cells in all four patients, at levels ranging from 1-40%. A clinical and molecular response was seen in 4/4 patients following a short period of cytopenia and all patients remain in clinical remission with a follow-up of 2 months-3 years post-DLI. STR-PCR indicated that a response was occurring during the period of pancytopenia when metaphase analysis was unsuccessful. Lineage-specific analysis of the cellular response to DLI was monitored using STR-PCR of peripheral blood (PB) and bone marrow (BM) lymphocyte-enriched fractions and CD2-positive and -negative T cell fractions. In one patient BM and PB CD34-positive and -negative fractions were also assessed. A change in the ratio of donor:recipient cells in the PB lymphocyte fraction was the earliest molecular indication of an anti-leukaemic response. Subsequent conversion to donor chimaerism occurred in the other lineages and the granulocyte fraction was the last lineage to convert. In conclusion, lineage-specific STR-PCR permits detailed monitoring of subtle changes in donor/recipient cell dynamics in specific lineages following DLI during the crucial pancytopenic phase and may be a useful predictor of haematological response to DLI therapy.