942 resultados para ANTIMICROBIAL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial peptides are important components of the host innate immune responses by exerting broad-spectrum microbicidal activity against pathogenic microbes. The first mollusk big defensin (designated AiBD) cDNA was cloned from bay scallop Argopecten irradians by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The scallop AiBD consisted of 531 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 122 amino acids. The high similarity of AiBD deduced amino acid sequence with big defensin from Tachypleus tridentatus and Branchiostoma belcheri tsingtaunese indicated that AiBD should be a member of big defensin family. The expression of AiBD in various tissues was measured by using Northern blotting analysis. mRNA transcripts of AiBD could be detected in haemocytes of unchallenged scallops. The temporal expression of AiBD in haemolymph after Vibrio anguilarum challenge was recorded by quantitative real time PCR. The relative expression level of AiBD in haemolymph was up-regulated evenly in the first 8 h, followed by a drastic increase, and increased 131.1-fold at 32 h post-injection. These results indicated that AiBD could be induced by bacterial challenge, and it should participate in the immune responses of A. irradians. Biological activity assay revealed that recombinant AiBD could inhibit the growth of both Gram-positive and Gram-negative bacteria, and also showed strong fungicidal activity towards the expression host. Recombinant expression of AiBD made it possible to further characterize its functions involved in immune responses, and also provided a potential therapeutic agent for disease control in aquaculture. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial peptides play a major role in innate immunity. The penaeidins, initially characterized from the shrimp Litopenaeus vannamei, are a family of antimicrobial peptides that appear to be expressed in all penaeid shrimps. As of recent, a large number of penaeid nucleotide sequences have been identified from a variety of penaeid shrimp species and these sequences currently reside in several databases under unique identifiers with no nomenclatural continuity. To facilitate research in this field and avoid potential confusion due to a diverse number of nomenclatural designations, we have made a systematic effort to collect, analyse, and classify all the penaeidin sequences available in every database. We have identified a common penaeidin signature and subsequently established a classification based on amino acid sequences. In order to clarify the naming process, we have introduced a 'penaeidin nomenclature' that can be applied to all extant and future penaeidins. A specialized database, PenBase, which is freely available at http://www.penbase.immunaqua.com, has been developed for the penaeidin family of antimicrobial peptides, to provide comprehensive information about their properties, diversity and nomenclature. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anti-lipopolysaccharide factor CALF) is a small basic protein that can bind and neutralize lipopolysaccharide (LPS), mediating degranulation and activation of an intracellular coagulation cascade. In the present study, cDNA of the second Eriocheir sinensis ALF (designated as EsALF-2) was cloned and the full-length cDNA of EsALF-2 was of 724 bp, consisting of an open reading frame (ORF) of 363 bp encoding a polypeptide of 120 amino acids. The deduced amino acid of EsALF-2 shared 82% similarity with EsALF-1 from E. sinensis and about 53-65% similarity with ALFs from other crustaceans. The potential tertiary structures of EsALF-1 and EsALF-2 contained two highly conserved-cysteine residues to define the LPS binding site, but the N-terminal of EsALF-1 formed a single additional alpha-helix compared to EsALF-2, implying that EsALF-1 and EsALF-2 might represent different biological functions in E. sinensis. The mRNA transcript of EsALF-2 was detected in all examined tissues of healthy crabs, including haemocytes, hepatopancreas, gill, muscle, heart and gonad, which suggested that EsALF-2 could be a multifunctional molecule for the host immune defense responses and thereby provided systemic protection against pathogens. The mRNA expression of EsALF-2 was up-regulated after Listonelln anguillarum and Pichia pastoris challenge and the recombinant protein of EsALF-2 showed antimicrobial activity against L. anguillarum and P. pastoris. indicating that EsALF-2 was involved in the immune defense responses in Chinese mitten crab against L. anguillarum and P. pastoris. These results together indicated that there were abundant and diverse ALFs in E. sinensis with various biological functions and these ALFs would provide candidate promising therapeutic or prophylactic agents in health management and diseases control of crab aquaculture. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, using a bioassay-guided isolation and purification procedure, we obtained 3-chloro-2,5-dihydroxybenzyl alcohol from a marine-derived Ampelomyces species that effectively inhibited larval settlement of the tubeworm Hydroides elegans and of cyprids of the barnacle Balanus amphitrite. The inhibitive effect on larval settlement was nontoxic and the EC50 of 3-chloro-2,5-dihydroxybenzyl alcohol ranged from 3.19 mu g ml(-1) to 3.81 mu g ml(-1) while the LC50 was 266.68 lambda g ml(-1) for B. amphitrite cyprids; EC50 ranged from 0.67 mu g ml(-1) to 0.78 mu g ml(-1), and LC50 was 2.64 mu g ml(-1) for competent larvae of H. elegans, indicating that inhibitive effect of this compound was nontoxic. At a concentration of 50 mu g per disc, this compound showed strong inhibitive effects on the growth of 13 out of 15 marine bacterial species tested in disc diffusion bioassay. Overall, the high inhibitory activities against bacteria and larval settlement as well as the non- or low-toxic nature of this compound to the barnacle and polychaete larvae suggest this compound could be a potent antifoulant and/or antibiotic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty-nine marine bacterial strains were isolated from the sponge Hymeniacidon perleve at Nanji island, and antimicrobial screening showed that eight strains inhibited the growth of terrestrial microorganisms. The strain NJ6-3-1 with wide antimicrobial spectrum was identified as Pseudoalteromonas piscicida based on its 16S rRNA sequence analysis. The major antimicrobial metabolite, isolated through bioassay-guide fractionation of TLC bioautography overlay assay, was identified as norharman (a beta-carboline alkaloid) by EI-MS and NMR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to explore marine microorganisms with medical potential, marine bacteria were isolated from seawater, sediment, marine invertebrates and seaweeds collected from different coastal areas of the China Sea. The antimicrobial activities of these bacteria were investigated. Ethyl acetate extracts of marine bacterial fermentation were screened for antimicrobial activities using the method of agar diffusion. The results showed that 42 strains of the isolates have antimicrobial activity. The proportion of active bacteria associated with marine invertebrates (20%) and seaweeds (11%) is higher than that isolated from seawater (7%) and sediment (5%). The active marine bacteria were assigned to the genera Alteromonas, Pseudomonas, Bacillus and Flavobacterium. The TLC autobiographic overlay assay implied that the antimicrobial metabolites produced by four strains with wide antimicrobial spectrum were different. Due to a competitive role for space and nutrient, the marine bacteria associated with marine macroorganisms (invertebrates and seaweeds) could produce more antibiotic substances. These marine bacteria were expected to be potential resources of natural antibiotic products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan, carboxymethyl chitosan (CIVICS) and chitosan sulfates (CSS) with different molecular weight were modified by reacting with 4-hydroxyl-5-chloride-1,3-benzene-disulfo-chloride or 2-hydroxyl-5-chloride-1,3 -benzene-disulfo-chloride to give 12 kinds of new hydroxylbenzenesulfonailides derivatives of them. The preparation conditions of the derivatives were discussed in this paper, and their structures were characterized by FT-IR and C-13 NMR spectroscopy. The solubility of the derivatives was measured in the experiment. In addition, their antimicrobial activities against four bacteria and five crop-threatening pathogenic fungi were tested in the experiment. Besides, the rule and mechanism of their antibacterial activities were discussed in this paper. (C) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three different acyl thiourea derivatives of chitosan (CS) were synthesized and their structures were characterized by FT-IR spectroscopy and elemental analysis. The antimicrobial behaviors of CS and its derivatives against four species of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Sarcina) and four crop-threatening pathogenic fungi (Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, Colletotrichum gloeosporioides (Penz.) Saec, and Phyllisticta zingiberi) were investigated. The results indicated that the antimicrobial activities of the acyl thiourea derivatives are much better than that of the parent CS. The minimum value of MIC and MBC of the derivatives against E coli was 15.62 and 62.49 mu g/mL, respectively. All of the acyl thiourea derivatives had a significant inhibitory effect on the fungi in concentrations of 50 - 500 mu g/mL; the maximum inhibitory index was 66.67%. The antifungal activities of the chloracetyl thiourea derivatives of CS are noticeably higher than the acetyl and benzoyl thiourea derivatives. The degree of grafting of the acyl thiourea group in the derivatives was related to antifungal activity; higher substitution resulted in stronger antifungal activity. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, marine sponges collected in Irish waters were analysed for their associated microbiota. Of the approximately 240 bacterial isolates obtained from two sponges several showed antimicrobial activity; among them members of genera which have rarely been shown to produce antimicrobial compounds. Differences observed from the sponge-derived groups of isolates in terms of bioactivity suggests that S. carnosus isolates may be a better source of antibacterial compounds, while Leucosolenia sp. isolates appear to be a better source of antifungal compounds. More than 60% of fungal isolates obtained from 12 sponge samples proved to be bioactive. One of the isolates, which was closely related to Fusarium oxysporum and showed activity against bacteria and fungi, was investigated for its secondary metabolite genes. At least 5 different NRPS genes, with a sequence similarity as low as 50 % to known genes, were identified highlighting the likelihood that this isolate may be capable of producing novel secondary metabolites. A Micromonospora sp. was isolated from a Haliclona simulans sample collected in Irish waters. The isolate inhibited the growth of Gram positive bacterial test strains in three different antimicrobial assays. Employing preparative layer chromatography the compound responsible for the bioactivity could be isolated. According to LC-MS andNMR data the bioactive compound could indeed be novel. Finally, two deep water sponges were shown to host a remarkably different bacterial and archaeal diversity by application of 454 Pyrosequencing. The L. diversichela –proteobacterial community was dominated by a single ƴ-proteobacterial bacterium whereas the S. normani sample hosted a largely sponge specific microbial community, even more diverse than has been previously reported for shallow water sponges. Organisms potentially involved in nitrification, sulphate reduction and secondary metabolite production were found to be spatially distributed in the sponge. Furthermore, a deep sea specific population was implied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To screen for novel ribosomally synthesised antimicrobials, in-silico genome mining was performed on all publically available fully sequenced bacterial genomes. 49 novel type 1 lantibiotic clusters were identified from a number of species, genera and phyla not usually associated with lantibiotic production, and indicates high prevalence. A crucial step towards the commercialisation of fermented beverages is the characterisation of the microbial content. To achieve this goal, we applied next-generation sequencing techniques to analyse the bacterial and yeast populations of the organic, symbiotically-fermented beverages kefir, water kefir and kombucha. A number of minor components were revealed, many of which had not previously been associated with these beverages. The dominant microorganism in each of the water kefir grains and fermentates was Zymomonas, an ethanol-producing bacterium that had not previously been detected on such a scale. These studies represent the most accurate description of these populations to date, and should aid in future starter design and in determining which species are responsible for specific attributes of the beverages. Finally, high-throughput robotics was applied to screen for the presence of antimicrobial producers associated with these beverages. This revealed a low frequency of bacteriocin production amongst the bacterial isolates, with only lactococcins A, B and LcnN of lactococcin M being identified. However, a proteinaceous antimicrobial produced by the yeast Dekkera bruxellensis, isolated from kombucha, was found to be active against Lactobacillus bulgaricus. This peptide was patially purified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Antimicrobial resistance is a major public health concern, and its increasing incidence in the Long Term Care Facility (LTCF) setting warrants attention (1). The prescribing of antimicrobials in this setting is often inappropriate and higher in Ireland than the European average (2). The aim of the study was to generate an evidence base for the factors influencing antimicrobial prescribing in LTCFs and to investigate Antimicrobial Stewardship (AMS) strategies for LTCFs. Methods: An initial qualitative study was conducted to determine the factors influencing antimicrobial prescribing in Irish LTCFs. This allowed for the informed implementation of an AMS feasibility study in LTCFs in the greater Cork region. Hospital AMS was also investigated by means of a national survey. A study of LTCF urine sample antimicrobial resistance rates was conducted in order to collate information for incorporation into future LTCF AMS initiatives. Results: The qualitative interviews determined that there are a multitude of factors, unique to the LTCF setting, which influence antimicrobial prescribing. There was a positive response from the doctors and nurses involved in the feasibility study as they welcomed the opportunity to engage with AMS and audit and feedback activities. While the results did not indicate a significant change in antimicrobial prescribing over the study period, important trends and patterns of use were detected. The antimicrobial susceptibility of LTCF urine samples compared to GPs samples found that there was a higher level of antimicrobial resistance in LTCFs. Conclusion: This study has made an important contribution to the development of AMS in LTCFs. The complexity of care and healthcare organisation, and the factors unique to LTCFs must be borne in mind when developing quality improvement strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To assess the performance of WHO's "Guidelines for care at the first-referral level in developing countries" in an area of intense malaria transmission and identify bacterial infections in children with and without malaria. DESIGN: Prospective study. SETTING: District hospital in Muheza, northeast Tanzania. PARTICIPANTS: Children aged 2 months to 13 years admitted to hospital for febrile illness. MAIN OUTCOME MEASURES: Sensitivity and specificity of WHO guidelines in diagnosing invasive bacterial disease; susceptibility of isolated organisms to recommended antimicrobials. RESULTS: Over one year, 3639 children were enrolled and 184 (5.1%) died; 2195 (60.3%) were blood slide positive for Plasmodium falciparum, 341 (9.4%) had invasive bacterial disease, and 142 (3.9%) were seropositive for HIV. The prevalence of invasive bacterial disease was lower in slide positive children (100/2195, 4.6%) than in slide negative children (241/1444, 16.7%). Non-typhi Salmonella was the most frequently isolated organism (52/100 (52%) of organisms in slide positive children and 108/241 (45%) in slide negative children). Mortality among children with invasive bacterial disease was significantly higher (58/341, 17%) than in children without invasive bacterial disease (126/3298, 3.8%) (P<0.001), and this was true regardless of the presence of P falciparum parasitaemia. The sensitivity and specificity of WHO criteria in identifying invasive bacterial disease in slide positive children were 60.0% (95% confidence interval 58.0% to 62.1%) and 53.5% (51.4% to 55.6%), compared with 70.5% (68.2% to 72.9%) and 48.1% (45.6% to 50.7%) in slide negative children. In children with WHO criteria for invasive bacterial disease, only 99/211(47%) of isolated organisms were susceptible to the first recommended antimicrobial agent. CONCLUSIONS: In an area exposed to high transmission of malaria, current WHO guidelines failed to identify almost a third of children with invasive bacterial disease, and more than half of the organisms isolated were not susceptible to currently recommended antimicrobials. Improved diagnosis and treatment of invasive bacterial disease are needed to reduce childhood mortality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gemstone Team Antibiotic Resistance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

11 Å tobermorite, Ca5Si6O16(OH)2 · 4H2O, is a layer lattice ion exchange mineral whose potential as a carrier for Ag+ and Zn2+ ions in antimicrobial, bioactive formulations has not yet been explored. In view of this, the in vitro bioactivity of Ag+- and Zn2+-exchanged 11 Å tobermorites and their bactericidal action against S. aureus and P.aeruginosa are reported. The in vitro bioactivity of the synthetic unsubstituted tobermorite phase was confirmed by the formation of bone-like hydroxycarbonate apatite (HCA) on its surface within 48 h of contact with simulated body fluid. The substitution of labile Ag+ ions into the tobermorite lattice delayed the onset of HCA-formation to 72 h; whereas, the Zn2+-substituted phase failed to elicit an HCA-layer within 14 days. Both Ag+- and Zn2+-exchanged tobermorite phases were found to exhibit marked antimicrobial action against S. aureus and P.aeruginosa, two common pathogens in biomaterial-centred infections.