933 resultados para AMPEROMETRIC BIOSENSORS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prussian blue has been formed by cyclic voltammetry onto the basal pyrolytic graphite surface to prepare a chemically modified electrode which provides excellent electrocatalysis for both oxidation and reduction of hydrogen peroxide. It is found for the first time that glucose oxidase or D-amino oxidase can be incorporated into a Prussian blue film during its electrochemical growth process. Two amperometric biosensors were fabricated by electrochemical codeposition, and the resulting sensors were protected by coverage with a thin film of Nafion. The influence of various experimental conditions was examined for optimum analytical performance. The glucose sensor responds rapidly to substrates with a detection limit of 2 x 10(-6) M and a linear concentration range of 0.01-3 mM. There was no interference from 2 mM ascorbic acid or uric acid. Another (D-amino acid) sensor gave a detection limit of 3 x 10(-5) M D-alanine, injected with a linear concentration range of 7.0 x 10(-5)-1.4 x 10(-2) M. Glucose and D-amino acid sensors remain relatively stable for 20 and 15 days, respectively. There is no obvious interference from anion electroactive species due to a low operating potential and excellent permselectivity of Nafion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amperometric biosensors based on surface modifications of electrodes are described. Cobalt porphyrins modified on glassy carbon and carbon fiber electrodes can greatly decrease the overpotential and increase the sensitivity of detection due to EC electroc

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper outlines the results obtained with biosensors designed for urea amperometric detection. The incorporation of urease into a bipolymeric substrate consisting of poly(pyrrole) and poly(5-amino-1-naphthol) was performed through four different approaches: direct adsorption, entrapment in cellulose acetate layer. cross-linking with glutaraldehyde, and also covalent attachment to the polymeric matrix. Poly(pyrrole) acts as amperometric transducer in these biosensors, while poly(5-amino-1-naphthol) drastically reduces the interference signal of agents such as ascorbic and uric acids. The biosensors containing urease covalently attached to the substrate provided interesting results in terms of sensitivity towards urea (0.50 mu A cm(-2) mmol(-1) L), lifetime (20 days) and short response times, due to the enzyme immobilization method used. All biosensors analyzed showed also a wide linear concentration range (up to 100 mmol L(-1)) and low detection limits (0.22-0.58 mmol L(-1)). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The layer-by-layer technique was exploited to immobilize the enzyme uricase onto indium tin oxide substrates coated with a layer of Prussian Blue. Uricase layers were alternated with either poly(ethylene imine) or poly(diallyidimethylammoniumchloride), and the resulting films were used as amperometric biosensors for uric acid. Biosensors with optimum perfomance had a limit of detection of 0.15 mu A mu mol 1(-1) cm(-2) with a linear response between 0.1 and 0.6 mu M of uric acid, which is sufficient for use in clinical tests. Bioactivity was preserved for weeks, and there was negligible influence from interferents, as detection was carried out at 0.0 V vs saturated calomel electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sophisticated molecular architectures can be produced with the layer-by-layer (LbL) method, which may combine distinct materials on the same film. In this study, we take advantage of this capability to produce cholesterol amperometric biosensors from LbL films containing hemoglobin (Hb) and cholesterol oxidase in addition to the polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(ethylene imine) (PEI). Following an optimization procedure, we found that an LbL film deposited onto ITO substrates, with the architecture ITO(PEI/Hb)5(PEI/COx)10, yielded a sensitivity of 93.4 μA μmol L-1 cm-2 for cholesterol incorporated into phospholipid liposomes, comparable to state-of-the-art biosensors. Hb acted as efficient electron mediator and did not suffer interference from phospholipids. Significantly, cholesterol could also be detected in real samples from chicken egg yolk, with no effects from potential interferents, including phospholipids. Taken together these results demonstrate the possible fabrication of low cost, easy-to-use cholesterol amperometric biosensors, whose sensitivity can be enhanced by further optimizing the molecular architectures of the LbL films. © 2012 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An amperometric biosensor based on cholinesterase (ChE) has been used for the determination of selected carbamate insecticides in vegetable samples. The linear range of the biosensor for the N-methylcarbamates (aldicarb, carbaryl, carbofuran, methomyl and propoxur) varied from 5 x 10(-5) to 50 mg kg(-1). Limits of detection were calculated on the basis that the ChE enzymes were 10% inhibited and varied, depending of the combination ChE (as acetyl- or butyrylcholinesterase) vs. inhibitor (pesticide), from 1 x 10(-4) to 3.5 mg kg(-1). The biosensor-based carbamate determination was compared to liquid chromatography/UV methods. Three vegetable samples were spiked with carbofuran and propoxur at 125 mu g kg(-1) followed by conventional procedures. Good correlations were observed for carbofuran in the vegetable extracts (79, 96 and 91% recoveries for potato, carrot and sweet pepper, respectively), whereas for propoxur unsatisfactory results were obtained. Potato and carrot samples were spiked with 10, 50 and 125 mu g kg(-1) carbofuran, followed by direct determination by the amperometric biosensor. The fortified sampler; resulted in very high inhibition values, and recoveries were: 28, 34 and 99% for potato, and 140, 90 and 101% for carrot, respectively, at these three fortification levels. (C) 1998 Elsevier B.V. B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科相匀渗透成长起来的新学科。发展电化学生物传感器是化学传感器研究的个重要领域,也是人们一直感兴趣的一个研究方向。人们一直在探求,在生物传感器的制备过程中将生物活性分子有效地固定于电极表面的新方法。将纳米技术与生物传感技术相结合是目前生物传感器研究领域的热点。由于纳米粒子具有高的比表面积、生物相容性、以及独特的电子、光子、和异相催化特性,能显扮提高生物酶在纳米粒子表面的催化活性。本论文在前人研究工作的基础上,主要做了以下几方面的工作:1.利用半肤胺单分子层修饰金电极,将银纳米粒子通过静电,吸附在半肤胺自组装单层膜的氨基端。然后辣根过氧化物酶分子通过静电吸附固定在银纳米粒子表面。实验结果表明,这种基于纳米粒子/生物酶分子自组装的力法,能够有效地将辣根过氧化物酶固定在电极表面。而且这种方法也为其它生物酶传感器的制备提供了可能性。2.利用原子力显微镜对金基底表面的组装过程以及银纳米粒子和辣根过氧化物酶在金基底表面的分布进行表征。通过在轻敲模式下所得到的AFM图直接观察金基底表面依次组装半耽胺、银纳米粒子、辣根过氧化物酶后的表而形貌特征。3.用循环伏安方法和安培电流法对辣根过氧化物酶生物传感器催化过氧化氢的行为进行了研究。研究了磷酸缓冲溶液的pH值和电流检测过程中所施加的工作电位对酶电极响应电流所产生的影响,得出了利用该辣根过氧化物酶生物传感器检测过氧化氢的最优化检测条件。研究了辣根过氧化物酶生物传感器检测过氧化氢的灵敏度,最低检出限,以及符合线性关系的浓度范围。对辣根过氧化物酶生物传感器的重现性和稳定性进行了研究。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fullerene/ionic-liquid composite was explored. Transmission Electron Microscopy (TEM) study showed that in the composite, C-60 mainly exists as nano-clusters, Raman spectrum proved that the composite formed only by physical Mix of C-60 and 1-Butyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6), the combination did not change the chemical naturation of C-60. The electrochemical properties of the composite modified electrode, including the electrode reaction control function and the interfacial potential effect were studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Through a new and simple ion-exchange route, two-electron redox mediator thionine has been deliberately incorporated into the carbon nanotubes (CNTs)/Nafion composite film due to the fact that there is strong interaction between any of two among the three materials (ion-exchange process between thionine and Nafion, strong adsorption of thionine by CNTs, and wrapping and solubilizing of CNTs with Nation). The good homogenization of electron conductor CNTs in the integrated films provides the possibility of three-dimensional electron conductive network. The resulting integrated films exhibited high and stable electrocatalytic activity toward NADH oxidation with the significant decrease of high overpotential, which responds more sensitively more than those modified by thioine or CNTs alone. Such high electrocatalytic activity facilitated the low potential determination of NADH (as low as -0.1 V), which eliminated the interferences from other easily oxidizable species. In a word, the immobilization approach is very simple, timesaving and effective, which could be extended to the immobilization of other cationic redox mediators into the CNTs/Nafion composite film. And these features may offer potential promise for the design of amperometric biosensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiwall carbon nanotubes (CNTs)-modified electrode has been prepared by using ionic liquid (IL) as the binder. The as-prepared CNTs-IL composite modified electrode has good biocompatibility and is a suitable matrix to immobilize biomolecules. Glucose oxidase (GOx), containing flavin adenine dinucleotide as active site, stably adsorbed on modified electrode surface has resulted in the direct electron transfer. The electron transfer rate of 9.08 s(-1) obtained is much higher than that of GOx adsorbed on the CNTs papers (1.7 s(-1)), and the process is more reversible with small redox peak separation of 23 mV This may be due to the synergetic promotion of CNTs and IL to electron transfer of the protein, especially the IL as the binder, showing better electrochemical properties than that of chitosan and Nafion. Furthermore, GOx adsorbed at the modified electrode exhibits good stability and keeps good electrocatalytic activity to glucose with broad linear range up to 20 mM. Besides, the simple preparation procedure and easy renewability make the system a basis to investigate the electron transfer kinetics and biocatalytic performance of GOx and provide a promising platform for the development of biosensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrooxidation polymerization of phenothiazine derivatives, including azure A and toluidine blue 0, has been studied at screen-printed carbon electrodes in neutral phosphate buffer. Both compounds yield strongly adsorbed electroactive polymer with reversible behavior and formal potentials closed to 0.04 V at pH 6.9. The modified electrodes exhibited good stability and electrocatalysis for NADH oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 500 mV lower than that of the bare electrodes. Further, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5-100 muM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrooxidation polymerization of azure B on screen-printed carbon electrodes in neutral phosphate buffer was studied. The poly(azure B) modified electrodes exhibited excellent electrocatalysis and stability for dihydronicotinamide adenine dinucleotide (NADH) oxidation in phosphate buffer (pH 6.9), with an overpotential of more than 400 mV lower than that at the bare electrodes. Different techniques, including cyclic voltammetry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy have been employed to characterize the poly (azure B) film. Furthermore, the modified screen-printed carbon electrodes were found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 0.5 muM to 100 muM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A poly(thionine) modified screen-printed carbon electrode has been prepared by an electrooxidative polymerization of thionine in neutral phosphate buffer. The modified electrodes are found to give stable and reproducible electrocatlytic responses to NADH and exhibit good stability. Several techniques, including cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), have been employed to characterize the poly(thionine) film. Further, the modified screen-printed carbon electrode was found to be promising as an amperometric detector for the flow injection analysis (FIA) of NADH, typically with a dynamic range of 5-100 muM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Iridium powder is introduced into sol-gel process for the first time to fabricate a novel type of sol-gel derived metal composite electrode. The iridium ceramic electrode shows excellent electrocatalytic action for both oxidation and reduction of hydrogen peroxide. The glucose biosensor based on sol-gel derived iridium composite electrode was fabricated. The biosensor shows highly selectivity towards glucose because of the strong catalytic action of iridium composite matrix for enzyme-liberated hydrogen peroxide at low operating potential, at which common interferences cannot be sensed. The novel type of biosensor can be renewed by simply mechanical polishing with favorable reproducibility and long-term stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Iridium powder is introduced into sol-gel process for the first time to fabricate a novel type of sol-gel derived metal composite electrode. The iridium ceramic electrode shows excellent electrocatalytic action for both oxidation and reduction of hydrogen peroxide. The glucose biosensor based on sol-gel derived iridium composite electrode was fabricated. The biosensor shows highly selectivity towards glucose because of the strong catalytic action of iridium composite matrix for enzyme-liberated hydrogen peroxide at low operating potential, at which common interferences cannot be sensed. The novel type of biosensor can be renewed by simply mechanical polishing with favorable reproducibility and long-term stability.