999 resultados para AFLATOXIN PRODUCTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil contributes substantially to the global peanut production, and the state of Sao Paulo is the largest producer in the country. Peanut crops can be contaminated by Aspergillus flavus strains producing aflatoxins, which are highly toxic and carcinogenic. Thus, the production of high-quality peanuts is crucial both for the commercial peanut industry and as a matter of public health. In this study, we used amplified fragment length polymorphism analysis (AFLP) to investigate the genetic variability among A. flavus strains isolated from fresh peanuts harvested in four different regions in the state of Sao Paulo, and to determine whether the molecular genetic profiles correlated with aflatoxin production or sclerotia formation. AFLP analysis generated 78 fragments ranging from 27 to 365 base pairs in length. Thirteen percent were not polymorphic. Genotyping identified twelve groups of A. flavus. On the basis of the polymorphisms identified, similarity between the isolates ranged from 37% to 100%. Of all isolates collected, 91.7% produced aflatoxins and 83.9% produced small sclerotia. Statistical analysis failed to suggest any relationship between the presence of sclerotia and mean levels of aflatoxins B-1 and B-2. Furthermore, a dendrogram based on AFLP data revealed substantial genetic variability among the A. flavus strains, but showed no correlation between dendrogram groups separated by molecular genetic features and production of aflatoxins B-1 or B-2 or the formation of sclerotia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, natural occurrence of fungi and aflatoxin B1 (AFB1) in pellet feed and feed ingredients used for rainbow trout was investigated with emphasis to Aspergillus section Flavi members and medicinal plants inhibitory to Aspergillus growth and/or AF production. The feed samples were cultured on the standard isolation media including dichloran rosebengal chloramphenicol agar (DRCA) and Aspergillus flavus/parasiticus agar (AFPA) for 2 weeks at 28 °C. Identification of fungal isolates was implemented based on the macro- and microscopic morphological criteria. AFs were detected using high performance liquid chromatography (HPLC). Based on the results obtained, a total of 109 fungal isolates were identified of which Aspergillus was the prominent genus (57.0%), followed by Penicillium (12.84%), Absidia (11.01%) and Pseudallscheria (10.10%). The most frequent Aspergillus species was A. flavus (60.66%) isolated from all the feed ingredients as well as pellet feed. Among 37 A. flavus isolates, 19 (51.35%) were able to produce AFB1 on yeast extract-sucrose (YES) broth in the range of 10.2 to 612.8 [tg/g fungal dry weight. HPLC analyses of trout feed showed that pellet feed and all feed ingredients tested except gluten were contaminated with different levels of AFB1 in the range of 1.83 to 67.35 lig/kg. In order to finding natural inhibitors of fungal growth and/or AF production, essential oils (EOs) and extracts of 49 medicinal plants were studied against an aflatoxin-producing A. parasiticus using a microbioassay technique. The EOs was analyzed by gas chromatography/mass spectrometry (GC/MS). Based on the results obtained, Achillea millefolium sub sp. elborsensis, Ferula gummosa, Mentha spicata, Azadirachta indica, Conium maculatum and Artemisia dracunculus remarkably inhibited A. parasiticus growth without affecting AF production by the fungus. Besides of Thymus vulgaris and Citrus aurantifolia, the EO of Foeniculum vulgare significantly inhibited both fungal growth (-70.0%) and AFs B1 and G1 (-99.0%) production. The EO of Carum carvi and ethyl acetate extract of Platycladus orientalis suppressed AFs B1 and G1 by more than 90.0%, without any obvious effect on fungal growth. The IC50 values of bioactive plants for AFs B1 and G1 were determined in the ranges of 90.6 to 576.2 and 2.8 to 61.9 µg/ml, respectively. Overall, results of the present study indicate the importance of AF contamination of trout feed as a risk factor for fish farming and thus, an urgent necessity for constant monitoring of trout feed for any unacceptable levels of AF contamination. Likewise, antifungal activities of bioactive plants introduced here would be an important contribution to explain the use of these plants as effective antimicrobial candidates to protect feeds from toxigenic fungus growth and subsequent AF contamination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of the present study was to evaluate the effects of different gamma radiation doses on the growth of Alternaria alternata and on the production of toxins alternariol (AOH), and alternariol monomethyl ether (AME) in sunflower seed samples. After irradiation with 2, 5 and 7 kGy, the spore mass was resuspended in sterile distilled water and the suspension was inoculated into sunflower seeds. The number of colony-forming units per gram (CFU/g) was determined after culture on Dichloran Rose Bengal Chloramphenicol and Dichloran Chloramphenicol Malt Extract Agar. The presence of AOH and AME was investigated by liquid chromatography coupled to mass spectrometry. The radiation doses used resulted in a reduction of the number of A. alternata CFU/g and of AOH and AME levels when compared to the nonirradiated control group. Maximum reduction of the fungus (98.5%) and toxins (99.9%) was observed at a dose of 7 and 5 kGy, respectively. Under the present conditions, gamma radiation was found to be an alternative for the control of A. alternata and, consequently, of AOH and AME production in sunflower seeds. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experiment was conducted to study the effects of liming and drying method on Ca nutrition, fungus infection and aflatoxin production potential on peanut (Arachis hypogea) grains. Peanut cv. Botutatu was grown in the absence or presence of liming to raise the base saturation of the soil from 20 to 56%. Calcium contents of the soil were increased from 5.5 to 14.6 mmol((c))kg-1 and pH from 4.2 to 4.9. After harvest, plants and pods were dried in (1) shade, (2) field down to 100 g water kg-1 (3) field down to 250 g water kg-1 and transferred to a forced-air oven at 30°C, (4) field down to 360 g water kg-1 and transferred to a forced-air oven at 30°C. Calcium contents were analyzed in the grains, pericarps and seed coats. The incidence of Aspergillus spp., Penicillium spp., Rhizopus spp. and potential aflatoxin production in vitro were evaluated, as well as the seed coat thickness. The seed coat was thicker when peanut was grown in the presence of lime, leading to a decrease in seed infection by Aspergillus spp. and Penicillium spp. When plants were dried in shade, the growth of aflatoxinogenic fungi was independent of liming. However, in plants dried in the field or field + oven, the development of these fungi was decreased and even suppressed when the Ca content of the seed coat was increased from 2.2 to 5.5 g kg-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fungal and mycotoxin contamination was investigated in field samples of nuts, shells and pods of the Brazil nut collected during different periods in Itacoatiara, State of Amazonas, Brazil: day 0, samples still on the tree: days 5, 10 and 15, samples in contact with soil for 5, 10 and 15 days, respectively. The most prevalent fungi were Aspergillus flavus in fruit pods and nuts and Fusarium spp. in shells. Penicillium spp. and A. flavus were isolated from soil, and Fusarium spp. and Penicillium spp. from air. Aflatoxins and cyclopiazonic acid were not detected in any of the samples analyzed. The high frequency of isolation of aflatoxigenic A. flavus strains from soil and Brazil nuts increases the chance of aflatoxin production in these substrates. These findings suggest a possible contamination before drying and indicate soil as the main source of fungal contamination of Brazil nuts. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aflatoxins can cause great economic losses and serious risks to humans and animals health. The largest aflatoxin producers belong to Aspergillus section Flavi and can occur naturally in food commodities. Studies showed that molecular tools as well as the type of sclerotia produced by the strains could be helpful for identification of Aspergillus species and could be correlated with levels of toxin production. The purpose of this work was to characterize the genetic diversity using AFLP technique, the type of sclerotia and the ability of aflatoxin production by isolated strains from corn of different origins in Brazil, and to verify whether qPCR based on aflR and aflP genes is appropriate for estimating the level of aflatoxin production. All the 75 strains were classified as A. flavus and the AFLP technique showed a wide intraspecific variability within them. Regarding sclerotia production, 34% were classified as S and 66% as L type. Among the aflatoxin-producers, 52.8% produced aflatoxin B-1, while 47.2% aflatoxins B-1 and B-2. Statistical analysis showed no correlation between sclerotia production and aflatoxigenicty, and no correlation between the phylogenetic clusters and aflatoxin production. Concerning the relative expression of aflR and aflP, Pearson's correlation test demonstrated low positive correlation between the expression of the aflR and aflP genes and the production of AFB(1) and AFB(2), but showed high positive correlation between aflR and aflP expression. In contrast to the other reference strains, A. oryzae ATCC 7282 showed no amplification of aflR and aflP. The results highlight the need for detection of reliable and reproducible markers with a high positive correlation with aflatoxin production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to evaluate the presence of fungi and mycotoxins (aflatoxins and cyclopiazonic acid) in Brazil nut samples collected in different states of the Brazilian Amazon region: Acre, Amazonas, Amapa, and Para. A total of 200 husk samples and 200 almond samples were inoculated onto Aspergillus flavus-parasiticus agar for the detection of fungi. Mycotoxins were analyzed by high-performance liquid chromatography. The mycobiota comprised the following fungi, in decreasing order of frequency: almonds - Phialemonium spp. (54%), Penicillium spp. (16%), Fusarium spp. (13%), Phaeoacremonium spp. (11%), and Aspergillus spp. (4%), husks - Phialemonium spp. (62%), Phaeoacremonium spp. (11%), Penicillium spp. (10%), Fusarium spp. (9%), and Aspergillus spp. A polyphasic approach was used for identification of Aspergillus species. Aflatoxins were detected in 22 (11%) of the 200 almond samples, with 21 samples presenting aflatoxin B-1 levels above 8 mu g/kg, the limit established by the European Commission for Brazil nuts for further processing. Nineteen (9.5%) of the 200 husk samples contained aflatoxins, but at levels lower than those seen in almonds. Cyclopiazonic acid (CPA) was detected in 44 (22%) almond samples, with levels ranging from 98.65 to 1612 mu g/kg. Aspergillus nomius and A. flavus were the most frequent Aspergillus species. The presence of fungi does not necessarily imply mycotoxin contamination, but almonds of the Brazil nut seem to be a good substrate for fungal growth. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brazil nuts are an important export market in its main producing countries, including Brazil, Bolivia, and Peru. Approximately 30,000 tons of Brazil nuts are harvested each year. However, substantial nut contamination by Aspergillus section Flavi occurs with subsequent production of aflatoxins. In our study, Aspergillus section Flavi were isolated from Brazil nuts (Bertholletia excelsa), and identified by morphological and molecular means. We obtained 241 isolates from nut samples, 41% positive for aflatoxin production. Eighty-one isolates were selected for molecular investigation. Pairwise genetic distances among isolates and phylogenetic relationships were assessed. The following Aspergillus species were identified: A. flavus, A. caelatus, A. nomius, A. tamarii, A. bombycis, and A. arachidicola. Additionally, molecular profiles indicated a high level of nucleotide variation within beta-tubulin and calmodulin gene sequences associated with high genetic divergence from RAPD data. Among the 81 isolates analyzed by molecular means, three of them were phylogenetically distinct from all other isolates representing the six species of section Flavi. A putative novel species was identified based on molecular profiles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brazil nut (Bertholletia excelsa) is an important commodity from the Brazilian Amazon, and approximately 37,000 tons (3.36 × 10⁷ kg) of Brazil nuts are harvested each year. However, substantial nut contamination by Aspergillus section Flavi occurs, with subsequent production of mycotoxins. In this context, the objective of the present investigation was to evaluate the presence of fungi and mycotoxins (aflatoxins and cyclopiazonic acid) in 110 stored samples of cultivated Brazil nut (55 samples of nuts and 55 samples of shells) collected monthly for 11 months in Itacoatiara, State of Amazonas, Brazil. The samples were inoculated in duplicate onto Aspergillus flavus and Aspergillus parasiticus agar and potato dextrose agar for the detection of fungi, and the presence of mycotoxins was determined by high-performance liquid chromatography. The most prevalent fungi in nuts and shells were Aspergillus spp., Fusarium spp., and Penicillium spp. A polyphasic approach was used for identification of Aspergillus species. Aflatoxins and cyclopiazonic acid were not detected in any of the samples analyzed. The low water activity of the substrate was a determinant factor for the presence of fungi and the absence of aflatoxin in Brazil nut samples. The high frequency of isolation of aflatoxigenic Aspergillus section Flavi strains, mainly A. flavus, and their persistence during storage increase the chances of aflatoxin production on these substrates and indicates the need for good management practices to prevent mycotoxin contamination in Brazil nuts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluated the presence of fungi and mycotoxins [aflatoxins (AFs), cyclopiazonic acid (CPA), and aspergillic acid] in stored samples of peanut cultivar Runner IAC Caiapó and cultivar Runner IAC 886 during 6 months. A total of 70 pod and 70 kernel samples were directly seeded onto Aspergillus flavus and Aspergillus parasiticus agar for fungi isolation and aspergillic acid detection, and AFs and CPA were analyzed by high-performance liquid chromatography. The results showed the predominance of Aspergillus section Flavi strains, Aspergillus section Nigri strains, Fusarium spp., Penicillium spp. and Rhizopus spp. from both peanut cultivars. AFs were detected in 11.4% of kernel samples of the two cultivars and in 5.7% and 8.6% of pod samples of the Caiapó and 886 cultivars, respectively. CPA was detected in 60.0% and 74.3% of kernel samples of the Caiapó and 886 cultivars, respectively. Co-occurrence of both mycotoxins was observed in 11.4% of kernel samples of the two cultivars. These results indicate a potential risk of aflatoxin production if good storage practices are not applied. In addition, the large number of samples contaminated with CPA and the simultaneous detection of AFs and CPA highlight the need to investigate factors related to the control and co-occurrence of these toxins in peanuts.