953 resultados para ACTIN-BINDING PROTEINS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex animals use a wide variety of adaptor proteins to produce specialized sites of interaction between actin and membranes. Plants do not have these protein families, yet actin-membrane interactions within plant cells are critical for the positioning of subcellular compartments, for coordinating intercellular communication, and for membrane deformation [1]. Novel factors are therefore likely to provide interfaces at actin-membrane contacts in plants, but their identity has remained obscure. Here we identify the plantspecific Networked (NET) superfamily of actin-binding proteins, members of which localize to the actin cytoskeleton and specify different membrane compartments. The founding member of the NET superfamily, NET1A, is anchored at the plasma membrane and predominates at cell junctions, the plasmodesmata. NET1A binds directly to actin filaments via a novel actin-binding domain that defines a superfamily of thirteen Arabidopsis proteins divided into four distinct phylogenetic clades. Members of other clades identify interactions at the tonoplast, nuclear membrane, and pollen tube plasma membrane, emphasizing the role of this superfamily in mediating actin-membrane interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plant actin cytoskeleton is a highly dynamic, fibrous structure essential in many cellular processes including cell division and cytoplasmic streaming. This structure is stimulus responsive, being affected by internal stimuli, by biotic and abiotic stresses mediated in signal transduction pathways by actin-binding proteins. The completion of the Arabidopsis genome sequence has allowed a comparative identification of many actin-binding proteins. However, not all are conserved in plants, which possibly reflects the differences in the processes involved in morphogenesis between plant and other cells. Here we have searched for the Arabidopsis equivalents of 67 animal/fungal actin-binding proteins and show that 36 are not conserved in plants. One protein that is conserved across phylogeny is actin-depolymerizing factor or cofilin and we describe our work on the activity of vegetative tissue and pollen-specific isoforms of this protein in plant cells, concluding that they are functionally distinct.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The actin cytoskeleton plays a key role in the deformability of the cell and in mechanosensing. Here we analyze the contributions of three major actin cross-linking proteins, myosin II, a-actinin and filamin, to cell deformability, by using micropipette aspiration of Dictyostelium cells. We examine the applicability of three simple mechanical models: for small deformation, linear viscoelasticity and drop of liquid with a tense cortex; and for large deformation, a Newtonian viscous fluid. For these models, we have derived linearized equations and we provide a novel, straightforward methodology to analyze the experiments. This methodology allowed us to differentiate the effects of the cross-linking proteins in the different regimes of deformation. Our results confirm some previous observations and suggest important relations between the molecular characteristics of the actin-binding proteins and the cell behavior: the effect of myosin is explained in terms of the relation between the lifetime of the bond to actin and the resistive force; the presence of a-actinin obstructs the deformation of the cytoskeleton, presumably mainly due to the higher molecular stiffness and to the lower dissociation rate constants; and filamin contributes critically to the global connectivity of the network, possibly by rapidly turning over crosslinks during the remodeling of the cytoskeletal network, thanks to the higher rate constants, flexibility and larger size. The results suggest a sophisticated relationship between the expression levels of actinbinding proteins, deformability and mechanosensing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Golgi membranes and Golgi-derived vesicles are associated with multiple cytoskeletal proteins and motors, the diversity and distribution of which have not yet been defined. Carrier vesicles were separated from Golgi membranes, using an in vitro budding assay, and different populations of vesicles were separated using sucrose density gradients. Three main populations of vesicles labeled with beta-COP, gamma-adaptin, or p200/myosin II were separated and analyzed for the presence of actin/actin-binding proteins, beta-Actin was bound to Golgi cisternae and to all populations of newly budded vesicles. Centractin was selectively associated with vesicles co-distributing with beta-COP-vesicles, while p200/myosin II (non-muscle myosin IIA) and non-muscle myosin IIB were found on different vesicle populations. Isoforms of the Tm5 tropomyosins were found on selected Golgi-derived vesicles, while other Tm isoforms did not colocalize with Tm5 indicating the association of specialized actin filaments with Golgi-derived vesicles. Golgi-derived vesicles were shown to bind to F-actin polymerized from cytosol with Jasplakinolide. Thus, newly budded, coated vesicles derived from Golgi membranes can bind to actin and are customized for differential interactions with microfilaments by the presence of selective arrays of actin-binding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to metastasize away from the primary tumor site and migrate into adjacent tissues, cancer cells will stimulate cellular motility through the regulation of their cytoskeletal structures. Through the coordinated polymerization of actin filaments, these cells will control the geometry of distinct structures, namely lamella, lamellipodia and filopodia, as well as the more recently characterized invadopodia. Because actin binding proteins play fundamental functions in regulating the dynamics of actin polymerization, they have been at the forefront of cancer research. This review focuses on a subset of actin binding proteins involved in the regulation of these cellular structures and protrusions, and presents some general principles summarizing how these proteins may remodel the structure of actin. The main body of this review aims to provide new insights into how the expression of these actin binding proteins is regulated during carcinogenesis and highlights new mechanisms that may be initiated by the metastatic cells to induce aberrant expression of such proteins. © 2013 Landes Bioscience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium-dependent homotypic cell-cell adhesion, mediated by molecules such as E-cadherin, guides the establishment of classical epithelial cell polarity and contributes to the control of migration, growth, and differentiation. These actions involve additional proteins, including alpha- and beta-catenin (or plakoglobin) and p120, as well as linkage to the cortical actin cytoskeleton. The molecular basis for these interactions and their hierarchy of interaction remain controversial. We demonstrate a direct interaction between F-actin and alpha (E)-catenin, an activity not shared by either the cytoplasmic domain of E-cadherin or beta-catenin. Sedimentation assays and direct visualization by transmission electron microscopy reveal that alpha 1(E)-catenin binds and bundles F-actin in vitro with micromolar affinity at a catenin/G-actin monomer ratio of approximately 1:7 (mol/mol). Recombinant human beta-catenin can simultaneously bind to the alpha-catenin/actin complex but does not bind actin directly. Recombinant fragments encompassing the amino-terminal 228 residues of alpha 1(E)-catenin or the carboxyl-terminal 447 residues individually bind actin in cosedimentation assays with reduced affinity compared with the full-length protein, and neither fragment bundles actin. Except for similarities to vinculin, neither region contains sequences homologous to established actin-binding proteins. Collectively these data indicate that alpha 1 (E)-catenin is a novel actin-binding and -bundling protein and support a model in which alpha 1(E)-catenin is responsible for organizing and tethering actin filaments at the zones of E-cadherin-mediated cell-cell contact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural biology is a branch of science that concentrates on the relationship between the structure and function of biological macromolecules. The prevalence of a large number of three dimensional structures offers effective tools for bio-scientists to understand the living world. Actin is the most abundant cellular protein and one of its main functions is to produce movement in living cells. Actin forms filaments that are dynamic and which are regulated by a number of different proteins. A class of these regulatory proteins contains actin depolymerizing factor homology (ADF-H) domains. These directly interact with actin through their ADF-H domains. Although ADF-H domains possess very similar three dimensional structures to one another, they vary in their functional properties. One example of this is the ability to bind to actin monomers or filaments. During the work for this thesis two structures of ADF-H domains were solved by nuclear magnetic resonance spectroscopy (NMR). The elucidated structures help us understand the binding specificities of the ADF-H family members.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actin depolymerizing factors (ADF) are stimulus responsive actin cytoskeleton modulating proteins. They bind both monomeric actin (G-actin) and filamentous actin (F-actin) and, under certain conditions, F-actin binding is followed by filament severing. In this paper, using mutant maize ADF3 proteins, we demonstrate that the maize ADF3 binding of F-actin can be spatially distinguished from that of G-actin. One mutant, zmadf3–1, in which Tyr-103 and Ala-104 (equivalent to destrin Tyr-117 and Ala-118) have been replaced by phenylalanine and glycine, respectively, binds more weakly to both G-actin and F-actin compared with maize ADF3. A second mutant, zmadf3–2, in which both Tyr-67 and Tyr-70 are replaced by phenylalanine, shows an affinity for G-actin similar to maize ADF3, but F-actin binding is abolished. The two tyrosines, Tyr-67 and Tyr-70, are in the equivalent position to Tyr-82 and Tyr-85 of destrin, respectively. Using the tertiary structure of destrin, yeast cofilin, and Acanthamoeba actophorin, we discuss the implications of removing the aromatic hydroxyls of Tyr-82 and Tyr-85 (i.e., the effect of substituting phenylalanine for tyrosine) and conclude that Tyr-82 plays a critical role in stabilizing the tertiary structure that is essential for F-actin binding. We propose that this tertiary structure is maintained as a result of a hydrogen bond between the hydroxyl of Tyr-82 and the carbonyl of Tyr-117, which is located in the long α-helix; amino acid components of this helix (Leu-111 to Phe-128) have been implicated in G-actin and F-actin binding. The structures of human destrin and yeast cofilin indicate a hydrogen distance of 2.61 and 2.77 Å, respectively, with corresponding bond angles of 99.5° and 113°, close to the optimum for a strong hydrogen bond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytoskeleton plays an important role in neuronal morphogenesis. We have identified and characterized a novel actin-binding protein, termed Mayven, predominantly expressed in brain. Mayven contains a BTB (broad complex, tramtrack, bric-a-brac)/POZ (poxvirus, zinc finger) domain-like structure in the predicted N terminus and “kelch repeats” in the predicted C-terminal domain. Mayven shares 63% identity (77% similarity) with the Drosophila ring canal (“kelch”) protein. Somatic cell-hybrid analysis indicated that the human Mayven gene is located on chromosome 4q21.2, whereas the murine homolog gene is located on chromosome 8. The BTB/POZ domain of Mayven can self-dimerize in vitro, which might be important for its interaction with other BTB/POZ-containing proteins. Confocal microscopic studies of endogenous Mayven protein revealed a highly dynamic localization pattern of the protein. In U373-MG astrocytoma/glioblastoma cells, Mayven colocalized with actin filaments in stress fibers and in patchy cortical actin-rich regions of the cell margins. In primary rat hippocampal neurons, Mayven is highly expressed in the cell body and in neurite processes. Binding assays and far Western blotting analysis demonstrated association of Mayven with actin. This association is mediated through the “kelch repeats” within the C terminus of Mayven. Depolarization of primary hippocampal neurons with KCl enhanced the association of Mayven with actin. This increased association resulted in dynamic changes in Mayven distribution from uniform to punctate localization along neuronal processes. These results suggest that Mayven functions as an actin-binding protein that may be translocated along axonal processes and might be involved in the dynamic organization of the actin cytoskeleton in brain cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The espins are actin-binding and -bundling proteins localized to parallel actin bundles. The 837-amino-acid “espin” of Sertoli cell–spermatid junctions (ectoplasmic specializations) and the 253-amino-acid “small espin” of brush border microvilli are splice isoforms that share a C-terminal 116-amino-acid actin-bundling module but contain different N termini. To investigate the roles of espin and its extended N terminus, we examined the actin-binding and -bundling properties of espin constructs and the stoichiometry and developmental accumulation of espin within the ectoplasmic specialization. An espin construct bound to F-actin with an approximately threefold higher affinity (Kd = ∼70 nM) than small espin and was ∼2.5 times more efficient at forming bundles. The increased affinity appeared to be due to an additional actin-binding site in the N terminus of espin. This additional actin-binding site bound to F-actin with a Kd of ∼1 μM, decorated actin stress fiber-like structures in transfected cells, and was mapped to a peptide between the two proline-rich peptides in the N terminus of espin. Espin was detected at ∼4–5 × 106 copies per ectoplasmic specialization, or ∼1 espin per 20 actin monomers and accumulated there coincident with the formation of parallel actin bundles during spermiogenesis. These results suggest that espin is a major actin-bundling protein of the Sertoli cell–spermatid ectoplasmic specialization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In pollen development, a dramatic reorganization of the actin cytoskeleton takes place during the passage of the pollen grain into dormancy and on activation of pollen tube growth. A role for actin-binding proteins is implicated and we report here the identification of a small gene family in maize that encodes actin depolymerizing factor (ADF)-like proteins. The ADF group of proteins are believed to control actin polymerization and depolymerization in response to both intracellular and extracellular signals. Two of the maize genes ZmABP1 and ZmABP2 are expressed specifically in pollen and germinating pollen suggesting that the protein products may be involved in pollen actin reorganization. A third gene, ZmABP3, encodes a protein only 56% and 58% identical to ZmABP1 and ZmABP2, respectively, and its expression is suppressed in pollen and germinated pollen. The fundamental biochemical characteristics of the ZmABP proteins has been elucidated using bacterially expressed ZmABP3 protein. This has the ability to bind monomeric actin (G-actin) and filamentous actin (F-actin). Moreover, it decreases the viscosity of polymerized actin solutions consistent with an ability to depolymerize filaments. These biochemical characteristics, taken together with the sequence comparisons, support the inclusion of the ZmABP proteins in the ADF group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Septins (SEPTs) form a family of GTP-binding proteins implicated in cytoskeleton and membrane organization, cell division and host/pathogen interactions. The precise function of many family members remains elusive. We show that SEPT6 and SEPT7 complexes bound to F-actin regulate protein sorting during multivesicular body (MVB) biogenesis. These complexes bind AP-3, an adapter complex sorting cargos destined to remain in outer membranes of maturing endosomes, modulate AP-3 membrane interactions and the motility of AP-3-positive endosomes. These SEPT-AP interactions also influence the membrane interaction of ESCRT (endosomal-sorting complex required for transport)-I, which selects ubiquitinated cargos for degradation inside MVBs. Whereas our findings demonstrate that SEPT6 and SEPT7 function in the spatial, temporal organization of AP-3- and ESCRT-coated membrane domains, they uncover an unsuspected coordination of these sorting machineries during MVB biogenesis. This requires the E3 ubiquitin ligase LRSAM1, an AP-3 interactor regulating ESCRT-I sorting activity and whose mutations are linked with Charcot-Marie-Tooth neuropathies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actinin and spectrin proteins are members of the Spectrin Family of Actin Crosslinking Proteins. The importance of these proteins in the cytoskeleton is demonstrated by the fact that they are common targets for disease causing mutations. In their most prominent roles, actinin and spectrin are responsible for stabilising and maintaining the muscle architecture during contraction, and providing shape and elasticity to the red blood cell in circulation, respectively. To carry out such roles, actinin and spectrin must possess important mechanical and physical properties. These attributes are desirable when choosing a building block for protein-based nanoconstruction. In this study, I assess the contribution of several disease-associated mutations in the actinin-1 actin binding domain that have recently been linked to a rare platelet disorder, congenital macrothrombocytopenia. I investigate the suitability of both actinin and spectrin proteins as potential building blocks for nanoscale structures, and I evaluate a fusion-based assembly strategy to bring about self-assembly of protein nanostructures. I report that the actinin-1 mutant proteins display increased actin binding compared to WT actinin-1 proteins. I find that both actinin and spectrin proteins exhibit enormous potential as nano-building blocks in terms of their stability and ability to self-assemble, and I successfully design and create homodimeric and heterodimeric bivalent building blocks using the fusion-based assembly strategy. Overall, this study has gathered helpful information that will contribute to furthering the advancement of actinin and spectrin knowledge in terms of their natural functions, and potential unnatural functions in protein nanotechnology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A surface plasmon resonance-based solution affinity assay is described for measuring the Kd of binding of heparin/heparan sulfate-binding proteins with a variety of ligands. The assay involves the passage of a pre-equilibrated solution of protein and ligand over a sensor chip onto which heparin has been immobilised. Heparin sensor chips prepared by four different methods, including biotin–streptavidin affinity capture and direct covalent attachment to the chip surface, were successfully used in the assay and gave similar Kd values. The assay is applicable to a wide variety of heparin/HS-binding proteins of diverse structure and function (e.g., FGF-1, FGF-2, VEGF, IL-8, MCP-2, ATIII, PF4) and to ligands of varying molecular weight and degree of sulfation (e.g., heparin, PI-88, sucrose octasulfate, naphthalene trisulfonate) and is thus well suited for the rapid screening of ligands in drug discovery applications.