942 resultados para 320501 Pharmaceutical Sciences and Pharmacy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to systematically investigate the effect of lipid chain length and number of lipid chains present on lipopeptides on their ability to be incorporated within liposomes. The peptide KAVYNFATM was synthesized and conjugated to lipoamino acids having acyl chain lengths of C-8, C-12 and C-16. The C-12 construct was also prepared in the monomeric, dimeric and trimeric form. Liposomes were prepared by two techniques: hydration of dried lipid films (Bangham method) and hydration of freeze-dried monophase systems. Encapsulation of lipopeptide within liposomes prepared by hydration of dried lipid films was incomplete in all cases ranging from an entrapment efficiency of 70% for monomeric lipoamino acids at a 5% (w/w) loading to less than 20% for di- and trimeric forms at loadings of 20% (w/w). The incomplete entrapment of lipopeptides within liposomes appeared to be a result of the different solubilities of the lipopeptide and the phospholipids in the solvent used for the preparation of the lipid film. In contrast, encapsulation of lipopeptide within liposomes prepared by hydration of freeze-dried monophase systems was high, even up to a loading of 20% (w/w) and was much less affected by the acyl chain length and number than when liposomes were prepared by hydration of dried lipid films. Freeze drying of monophase systems is better at maintaining a molecular dispersion of the lipopeptide within the solid phospholipid matrix compared to preparation of lipid film by evaporation, particularly if the solubility of the lipopeptide in solvents is markedly different from that of the polar lipids used for liposome preparation. Consequently, upon hydration, the lipopeptide is more efficiently intercalated within the phospholipid bilayers. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new microscale method is reported for the determination of doxorubicin and its active metabolite, doxorubicinol, in parrot plasma. Sample workup involved acetonitrile protein precipitation, ethyl acetate extraction, followed by back extraction into HCl. Separations were achieved on a phenyl-hexyl column at 30 degrees C using acetonitrile (17%, v/v) in 0.01 M orthophosphoric acid (83%, v/v) delivered via a linear flow program. Fluorometric detection wavelengths were 235 nm (excitation) and 550 nm (emission). Calibration plots were linear (1 2 > 0.999), and recoveries were 71-87% from 20 to 400 ng/mL. Assay imprecision was

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to prepare solid Quil A-cholesterol-phospholid formulations (as powder mixtures or compressed to pellets) by physical mixing or by freeze-drying of aqueous dispersions of these components in ratios that allow spontaneous formation of ISCOMs and other colloidal stuctures upon hydration. The effect of addition of excess cholesterol to the lipid mixtures on the release of a model antigen (PE-FITC-OVA) from the pellets was also investigated. Physical properties were evaluated by X-ray powder diffractometry (XPRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and polarized light microscopy (PLM). Characterization of aqueous colloidal dispersions was performed by negative staining transmission electron microscopy (TEM). Physically mixed powders (with or without PE-FITC-OVA) and pellets prepared from the same powders did not spontaneously form ISCOM matrices and related colloidal structures such as worm-like micelles, ring-like micelles, lipidic/layered structures and lamellae (hexagonal array of ring-like micelles) upon hydration as expected from the pseudo-temary diagram for aqueous mixtures of Quil A, cholesterol and phospholipid. In contrast, spontaneous formation of the expected colloids was demonstrated for the freeze-dried lipid mixtures. Pellets prepared by compression of freeze-dried powders released PE-FITC-OVA slower than those prepared from physically mixed powders. TEM investigations revealed that the antigen was released in the form of colloidal particles (ISCOMs) from pellets prepared by compression of freeze-dried powders. The addition of excess cholesterol slowed down the release of antigen. The findings obtained in this study are important for the formulation of solid Quil A-containing lipid articles as controlled particulate adjuvant containing antigen delivery systems. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An assay using high performance liquid chromatography (HPLC)-electrospray ionization-tandem mass spectrometry (ESI-MS-MS) was developed for simultaneously determining concentrations of morphine, oxycodone, morphine-3-glucuronide, and noroxycodone, in 50 mul samples of rat serum. Deuterated (d(3)) analogues of each compound were used as internal standards. Samples were treated with acetonitrile to precipitate plasma proteins: acetonitrile was removed from the supernatant by centrifugal evaporation before analysis. Limits of quantitation (ng/ml) and their between-day accuracy and precision (%deviation and %CV) were-morphine, 3.8 (4.3% and 7.6%); morphine-3-glucuronide, 5.0 (4.5% and 2.9%); oxycodone, 4.5 (0.4% and 9.3%); noroxycodone, 5.0 (8.5% and 4.6%). (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uptake and metabolism profiles of ginsenoside Rh2 and its aglycon protopanaxadiol (ppd) were studied in the human epithelial Caco-2 cell line. High-performance liquid chromatography-mass spectrometry was applied to determine Rh2 and its aglycon ppd concentration in the cells at different pH, temperature, concentration levels and in the presence or absence of inhibitors. Rh2 uptake was time and concentration dependent, and its uptake rates were reduced by metabolic inhibitors and influenced by low temperature, thus indicating that the absorption process was energy-dependent. Drug uptake was maximal when the extracellular pH was 7.0 for Rh2 and 8.0 for ppd. Rh2 kinetic analysis showed that a non-saturable component (K-d 0.17 nmol (.) h(-1) (.) mg(-1) protein) and an active transport system with a K-m of 3.95 mumol (.) l(-1) and a V-max of 4.78 nmol(.)h(-1) (.)mg(-1) protein were responsible for the drug uptake. Kinetic analysis of ppd showed a non-saturable component (K-d 0.78 nmol (.) h(-1) (.) mg(-1) protein). It was suggested that active extrusion of P-glycoprotein and drug degradation in the intestine may influence Rh2 bioavailability.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-in-oil microemulsions (w/o ME) capable of undergoing a phase-transition to lamellar liquid crystals (LC) or bicontinuous ME upon aqueous dilution were formulated using Crodarnol EO, Crill 1 and Crillet 4, an alkanol or alkanediol as cosurfactant and water. The hypothesis that phase-transition of ME to LC may be induced by tears and serve to prolong precomeal retention was tested. The ocular irritation potential of components and formulations was assessed using a modified hen's egg chorioallantoic membrane test (HET-CAM) and the preocular retention of selected formulations was investigated in rabbit eye using gamma scintigraphy. Results showed that Crill 1, Crillet 4 and Crodamol EO were non-irritant. However, all other cosurfactants investigated were irritant and their irritation was dependent on their carbon chain length. A w/o ME formulated without cosurfactant showed a protective effect when a strong irritant (0.1 M NaOH) was used as the aqueous phase. Precorneal clearance studies revealed that the retention of colloidal and coarse dispersed systems was significantly greater than an aqueous solution with no significant difference between ME systems (containing 5% and 10% water) as well as o/w emulsion containing 85% water. Conversely, a LC system formulated without cosurfactant displayed a significantly greater retention compared to other formulations. (c) 2005 Elsevier B.V. All rights reserved.