966 resultados para 2 LINEAR CHAINS
Resumo:
Meiosis and (or) mitosis of males and females of Cryptotermes brevis, Eucryptotermes wheeleri, and Neotermes fulvescens, all of them from the neotropical region, were analyzed. Cryptotermes brevis showed a similar karyotype to that obtained by other authors for specimens of the neartic and Australian regions (2n = 36 for females and 2n = 37 for males, with XX and XYY sex mechanisms, respectively). Eucryptotermes wheeleri, the only species that has been described in this genus, showed the lowest number of chromosomes reported for Isoptera (2n = 22) until now. The male meiosis of this species presents a linear chain of six sex chromosomes, three of them being X and three of them Y chromosomes. Neotermes fulvescens showed a diploid number of 40 for males and 42 for females and, in the first male meiosis, two linear chains of chromosomes, both related to sex. One of the chains, named A, presented nine chromosomes and the other, named B, seven chromosomes. Hypotheses to explain these mechanisms are formulated in this paper and putative ancestral relationships with other species of Kalotermitidae are presented.
Resumo:
The monoanionic ligand 1,1,3,3 tetracyano-2 ethoxypropenide (tcnoet) is reported with its Cu(II)–bpy complex of formula [Cu2(µ-tcnoet)2(tcnoet)2(bpy)2]. The structure has been determined using X-ray diffraction and features an alternating chain with bridging tcnoet ligands. One ligand acts as a bidentate, dinucleating ligand with one short Cu–N and one medium Cu–N bond, whereas the other tcnoet is largely monodentate, albeit with a very weak interdimer Cu–N bond. Despite the arrangement in dinuclear units, further arranged into linear chains through the non-bridging tcnoet ligand, the compound shows no significant magnetic exchange, as deduced from magnetic susceptibility down to 4 K. Ligand-field, IR and EPR spectra in the solid state and in frozen solution are reported and are consistent with the overall structure.
Resumo:
The linear spin-1/2 Heisenberg antiferromagnet with exchanges J(1) and J(2) between first and second neighbors has a bond-order wave (BOW) phase that starts at the fluid-dimer transition at J(2)/J(1)=0.2411 and is particularly simple at J(2)/J(1)=1/2. The BOW phase has a doubly degenerate singlet ground state, broken inversion symmetry, and a finite-energy gap E-m to the lowest-triplet state. The interval 0.4 < J(2)/J(1) < 1.0 has large E-m and small finite-size corrections. Exact solutions are presented up to N = 28 spins with either periodic or open boundary conditions and for thermodynamics up to N = 18. The elementary excitations of the BOW phase with large E-m are topological spin-1/2 solitons that separate BOWs with opposite phase in a regular array of spins. The molar spin susceptibility chi(M)(T) is exponentially small for T << E-m and increases nearly linearly with T to a broad maximum. J(1) and J(2) spin chains approximate the magnetic properties of the BOW phase of Hubbard-type models and provide a starting point for modeling alkali-tetracyanoquinodimethane salts.
Resumo:
Two novel compounds, [Co(4,4'-bipy)(H2O)(4)](4-abS)(2).H2O (1) and [Mn(4,4'-bipy)(H2O)(4)](4-abs)(2).2H(2)O (2) (4,4'-bipy = 4,4'-bipyridine; 4-abs = 4-aminobenzenesulfonate), have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses, UV-vis and IR spectra, and TG analysis. X-ray structural analysis revealed that 1 and 2 both possess unusual hydrogen-bonded three-dimensional (3-D) networks encapsulating one-dimensional (1-D) covalently bonded infinite [M(4,4'-bipy)(H2O)(4)](2+) (M = Co, Mn) chains. The 4-abs anions in 1 form 1-D zigzag chains through hydrogen bonds. These chains are further extended through crystallization water molecules into 3-D hydrogen-bonded networks with 1-D channels, in which the [Co(4,4'-bipy)(H2O)(4)](2+) linear covalently bonded chains are located. Crystal data for 1: C22H30CoN4O11S2, monoclinic P2(1), a = 11.380(2) Angstrom, b = 8.0274(16) Angstrom, c = 15.670(3) Angstrom, alpha = gamma = 90degrees, beta = 92.82(3)degrees, Z = 2. Compound 2 contains interesting two-dimensional (2-D) honeycomb-like networks formed by 4-abs anions and lattice water molecules via hydrogen bonding, which are extended through other crystallization water molecules into three dimensions with 1-D hexagonal channels. The [Mn(4,4'-bipy)(H2O)(4)](2+) linear covalent chains exist in these channels. Crystal data for 2: C22H32WN4O12S2, monoclinic P2(1)/c, a = 15.0833(14) Angstrom, b = 8.2887(4) Angstrom, c = 23.2228(15) Angstrom, alpha = gamma = 90degrees, beta = 95.186(3)degrees, Z = 4.
Resumo:
The structures of proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the aliphatic Lewis bases triethylamine, diethylamine, n-butylamine and piperidine, namely triethylaminium 2-carboxy-4,5-dichlorobenzoate C~6~H~16~N^+^ C~8~H~3~Cl~2~O~4~^-^ (I), diethylaminium 2-carboxy-4,5-dichlorobenzoate C~4~H~12~N^+^ C~8~H~3~Cl~2~O~4~^-^ (II), bis(n-butylaminium) 4,5-dichlorophthalate monohydrate 2(C~4~H~12~N^+^) C~8~H~2~Cl~2~O~4~^2-^ . H~2~O (III) and bis(piperidinium) 4,5-dichlorophthalate monohydrate 2(C~5~H~12~N^+^) C~8~H~2~Cl~2~O~4~^2-^ . H~2~O (IV)have been determined at 200 K. All compounds have hydrogen-bonding associations giving in (I) discrete cation-anion units, linear chains in (II) while (III) and (IV) both have two-dimensional structures. In (I) a discrete cation-anion unit is formed through an asymmetric R2/1(4) N+-H...O,O' hydrogen-bonding association whereas in (II), one-dimensional chains are formed through linear N-H...O associations by both aminium H donors. In compounds (III) and (IV) the primary N-H...O linked cation-anion units are extended into a two-dimensional sheet structure via amide N-H...O(carboxyl) and ...O(carbonyl) interactions. In the 1:1 salts [(I) and (II)], the hydrogen 4,5-dichlorophthalate anions are essentially planar with short intramolecular carboxylic acid O-H...O(carboxyl) hydrogen bonds [O...O, 2.4223(14) and 2.388(2)A respectively]. This work provides a further example of the uncommon zero-dimensional hydrogen-bonded DCPA-Lewis base salt and the one-dimensional chain structure type, while even with the hydrate structures of the 1:2 salts with the primary and secondary amines, the low dimensionality generally associated with 1:1 DCPA salts is also found.
Resumo:
Three one-dimensional zinc phosphates, [C5N2H14][Zn(HPO4)2], I, [C10N4H26][Zn(HPO4)2].2H2O II, and [C4N2H6]2[Zn(HPO4)], III, have been prepared employing hydro/solvothermal methods in the presence of organic amines. While I and II consist of linear chains of corner-shared four-membered rings, III is a polymeric wire where the amine molecule is directly bonded to the metal center. The wire, as well as the chain in these structures, are held together by hydrogen bond interactions involving the amine and the framework oxygens. The polymeric zinc phosphate with wire-like architecture, III, is only the second example of such architecture. Crystal data: I, monoclinic, P21/c (no. 14), a=8.603(2), b=13.529(2), c=10.880(1) Å, β=94.9(1)°, V=1261.6(1) Å3, Z=4, ρcalc.=1.893 gcm−3, μ(MoKα)=2.234 mm−1, R1=0.032, wR2=0.086, [1532 observed reflections with I>2σ(I)], II, orthorhombic, Pbca (no. 61), a=8.393(1), b=15.286(1), c=22.659(1) Å, V=2906.9(2) Å3, Z=8, ρcalc.=1.794 gcm−3, μ(MoKα)=1.957 mm−1, R1=0.055, wR2=0.11, [1565 observed reflections with I>2σ(I) and III, monoclinic, P21/c (no. 14), a=8.241(1), b=13.750(2), c=10.572(1) Å, β=90.9(1)°, V=1197.7(2) Å3, Z=4, ρcalc.=1.805 gcm−3, μ(MoKα)=2.197 mm−1, R1=0.036, wR2=0.10, [1423 observed reflections with I>2σ(I)].
Resumo:
LaC3n+ (n = 0, 1, 2) clusters have been studied using B3LYP (Becke 3-parameter-Lee-Yang-Parr) density functional method. The basis set is Dunning/ Huzinaga valence double zeta for carbon and [2s2p2d] for lanthanum, denoted LANL1DZ. Four isomers are presented for each cluster; two of them are edge binding isomers with C-2 upsilon symmetry, the other two are Linear chains with C-infinity upsilon symmetry. Meanwhile, two spin states for each isomer, that is, singlet and triplet for LaC3+, doublet and quartet for LaC3 and LaC32+, respectively, are also considered. Geometries, vibrational frequencies, infrared intensities, and other quantities are reported and discussed. The results indicate that at some spin states; the C-2 upsilon symmetry isomers are the dominant structures, while for the other spin states, linear isomers are energetically favored. (C) 1998 John Wiley & Sons, Inc.
Resumo:
A series of quaternary metal sulfides of the general formula La3MM′S7 (M = Mn, Fe, Co; M′ = Al and M = Mg, Mn, Fe, Co, Ni; M′ = Fe) consisting of linear chains of face shared MS6 octahedra and isolated M′S4 tetrahedra has been prepared and studied. The aluminium compounds La3MAlS7 (M = Mn, Fe, Co) exhibit linear chain antiferromagnetism. Magnetic behavior of other La3MFeS7 sulfides has been examined in detail. The magnetic susceptibility of La3MgFeS7 shows that tetrahedral site Fe3+ undergoes a transition from Image to S = 2 spin state around 150 K.
Resumo:
A simple but efficient algorithm is presented for linear programming. The algorithm computes the projection matrix exactly once throughout the computation unlike that of Karmarkar’s algorithm where in the projection matrix is computed at each and every iteration. The algorithm is best suitable to be implemented on a parallel architecture. Complexity of the algorithm is being studied.
Resumo:
Phenylboronic acids can exist, in principle, in three different conformers (syn,syn; syn,anti and anti,anti) with distinct energy profiles. In their native state, these compounds prefer the energetically favored syn, anti-conformation. In molecular complexes, however, the functionality exhibits conformational diversity. In this paper we report a series of co-crystals, with N-donor compounds, prepared by a design strategy involving the synthons based on the syn, syn-conformation of the boronic acid functionality. For this purpose, we employed compounds with the 1,2-diazo fragment (alprazolam, 1H-tetrazole, acetazolamide and benzotriazole), 1,10-phenanthroline and 2,2'-bipyridine for the co-crystallization experiments. However, our study shows that the mere presence of the 1,2-diazo fragment in the coformer does not guarantee the successful formation of co-crystals with a syn, syn-conformation of the boronic acid. [GRAPHICS] The -B(OH)(2) fragment makes unsymmetrical O-H center dot center dot center dot N heterosynthons with alprazolam (ALP) and 1,10-phenanthroline (PHEN). In the co-crystals of phenylboronic acids with 1H-tetrazole (TETR) and 2,2'-bipyridine (BPY), the symmetrical boronic acid dimer is the major synthon. In the BPY complex, boronic acid forms linear chains and the pyridine compound interacts with the lateral OH of boronic acid dimers that acts as a connector, thus forming a ladder structure. In the TETR complex, each heterocycle interacts with three boronic acids. While two boronic acids interact using the phenolic group, the third molecule generates O-H center dot center dot center dot N hydrogen bonds using the extra OH group, of -B(OH)(2) fragment, left after the dimer formation. Thus, although molecules were selected retrosynthetically with the 1,2-diazo fragment or with nearby hetero-atoms to induce co-crystal formation using the syn,syn-orientation of the -B(OH)(2) functionality, co-crystal formation is in fact selective and is probably driven by energy factors. Acetazolamide (ACET) contains self-complementary functional groups and hence creates stable homosynthons. Phenylboronic acids being weak competitors fail to perturb the homosynthons and hence the components crystallize separately. Therefore, besides the availability of possible hydrogen bond acceptors in the required position and orientation, the ability of the phenyl-boronic acid to perturb the existing interactions is also a prerequisite to form co-crystals. This is illustrated in the table below. In the case of ALP, PHEN and BPY, the native structures are stabilized by weak interactions and may be influenced by the boronic acid fragment. Thus phenylboronic acids can attain co-crystals with those compounds, wherein the cyclic O-H center dot center dot center dot N hydrogen bonds are stronger than the individual homo-interactions. This can lower the lattice energy of the molecular complex as compared with the individual crystals. [GRAPHICS] Phenylboronic acids show some selectivity in the formation of co-crystals with N-heterocycles. The differences in solubility of the components fall short to provide a possible reason for the selective formation of co-crystals only with certain compounds. These compounds, being weak acids, do not follow the Delta pK(a) analysis and hence fail to provide any conclusive observation. Theoretical results show that of the three conformers possible, the syn,anti conformer is the most stable. The relative stabilities of the three conformers syn,anti,syn,syn and anti,anti are 0.0, 2.18 and 3.14 kcal/mol, respectively. The theoretical calculations corroborate the fact that only energetically favorable synthons can induce the formation of heterosynthons, as in ALP and PHEN complexes. From a theoretical and structural analysis it is seen that phenylboronic acids will form interactions with those molecules wherein the heterocyclic and acidic fragments can interrupt the homosynthons. However, the energy profile is shallow and can be perturbed easily by the presence of competing functional groups (such as OH and COOH) in the vicinity. [GRAPHICS] .
Resumo:
Symmetrized DMRG calculations on long oligomers of poly- para-phenylene (PPP) and poly-para-phenylene vinylene (PPV) systems within a `U-V' model have been carried out to obtain the one-photon, two-photon and singlet-triplet gaps in these systems. The extrapolated gaps (in eV) are 2.89, 3.76 and 2.72 in PPP and 3.01, 3.61 and 2.23 in PPV for the one- photon, two-photon and spin gaps respectively. By studying doped systems, we have obtained the exciton binding energies. The larger exciton binding energies, compared to strongly dimerized linear chains emphasizes the role of topology in these polymers. Bond orders, charge and spin correlations in the low-lying states bring out the similarities between the lowest one-photon, the lowest triplet and the lowest bipolaronic states in these systems. The two-photon state bond orders show evidence for strong localization of this excitation in both PPP and PPV systems.