916 resultados para 111204 Cancer Therapy (excl. Chemotherapy and Radiation Therapy)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A molecular model for the P450 enzyme cytochrome P450 C17 (CYP17) is presented based on sequence alignments of multiple template structures and homology modeling. This enzyme plays a central role in the biosynthesis of testosterone and is emerging as a major target in prostate cancer, with the recently developed inhibitor abiraterone currently in advanced clinical trials. The model is described in detail, together with its validation, by providing structural explanations to available site-directed mutagenesis data. The CYP17 molecule in this model is in the form of a triangular prism, with an edge of similar to 55 angstrom and a thickness of similar to 37 angstrom. It is predominantly helical, comprising 13 alpha helices interspersed by six 3(10) helices and 11 beta-sheets. Multinanosecond molecular dynamics simulations in explicit solvent have been carried out, and principal components analysis has been used to reveal the details of dynamics around the active site. Coarse-grained methods have also been used to verify low-frequency motions, which have been correlated with active-site gating. The work also describes the results of docking synthetic inhibitors, including the drug abiraterone and the natural substrate pregnenolone, in the CYP17 active site together with molecular dynamics simulations on the complexes. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early-phase clinical trials. In particular, the pre-clinical evidence for gold nanoparticles as sensitisers with ionising radiation in vitro and in vivo at kilovoltage and megavoltage energies is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid tumour accounts for 90% of all cancers. The current treatment approach for most solid tumours is surgery, however it is limited to early stage tumours. Other treatment options such as chemotherapy and radiotherapy are non-selective, thus causing damage to both healthy and cancerous tissue. Past research has focused on understanding tumour cells themselves, and conventional wisdom has aimed at targeting these cells directly. Recent research has shifted towards understanding the tumour microenvironment and it’s differences from that of healthy cells/tissues in the body and then to exploit these differences for treatmeat of the tumour. One such approach is utilizing anaerobic bacteria. Several strains of bacteria have been shown to selectively colonize in solid tumours, making them valuable tools for selective tumour targeting and destruction. Amongst them, the anaerobic Clostridium has shown great potential in penetration and colonization of the hypoxic and necrotic areas of the tumour microenvironment, causing significant oncolysis as well as enabling the delivery of therapeutics directly to the tumour in situ. Various strategies utilizing Clostridium are currently being investigated, and represent a novel area of emerging cancer therapy. This review provides an update review of tumour microenvironment as well as summary of the progresses and current status of Clostridial spore-based cancer therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The promising proposition of multifunctional nanoparticles for cancer diagnostics and therapeutics has inspired the development of theranostic approach for improved cancer therapy. Moreover, active targeting of drug carrier to specific target site is crucial for providing efficient delivery of therapeutics and imaging agents. In this regard, the present study investigates the theranostic capabilities of nutlin-3a loaded poly (lactide-co-glycolide) nanoparticles, functionalized with a targeting ligand (EpCAM aptamer) and an imaging agent (quantum dots) for cancer therapy and bioimaging. A wide spectrum of in vitro analysis (cellular uptake study, cytotoxicity assay, cell cycle and apoptosis analysis, apoptosis associated proteins study) revealed superior therapeutic potentiality of targeted drug loaded NPs over other formulations in EpCAM expressing cells. Moreover, our nanotheranostic system served as a superlative bio-imaging modality both in 2D monolayer culture and tumor spheroid model. Our result suggests that, these aptamer-guided multifunctional NPs may act as indispensable nanotheranostic approach toward cancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A failure of a cell to self destruct has long been associated with cancer progression and development. The fact that tumour cells may not instigate cell arrest or activate cell death mechanisms upon cancer drug delivery is a major concern. Autophagy is a mechanism whereby cell material can be engulfed and digested while apoptosis is a self-killing mechanism, both capable of hindering multiplication after cell injury. In particular situations, autophagy and apoptosis seem to co-exist simultaneously or interdependently with the aid of mutual proteins. This review covers roles of microRNAs and chemopreventive agents and makes an attempt at outlining possible partnerships in maximizing cancer cell death with minimal normal cell damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several dosimetric methods have been proposed for estimating red marrow absorbed dose (RMAD) when radionuclide therapy is planned for differentiated thyroid cancer, although to date, there is no consensus as to whether dose calculation should be based on blood-activity concentration or not. Our purpose was to compare RMADs derived from methods that require collecting patients' blood samples versus those involving OLINDA/EXM software, thereby precluding this invasive procedure. This is a retrospective study that included 34 patients under treatment for metastatic thyroid disease. A deviation of 10 between RMADs was found, when comparing the doses from the most usual invasive dosimetric methods and those from OLINDA/EXM. No statistical difference between the methods was discovered, whereby the need for invasive procedures when calculating the dose is questioned. The use of OLINDA/EXM in clinical routine could possibly diminish data collection, thus giving rise to a simultaneous reduction in time and clinical costs, besides avoiding any kind of discomfort on the part of the patients involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ribosome-inactivating proteins (RIPs) are a family of plant toxic enzymes that permanently damage ribosomes and possibly other cellular substrates, thus causing cell death involving different and still not completely understood pathways. The high cytotoxic activity showed by many RIPs makes them ideal candidates for the production of immunotoxins (ITs), chimeric proteins designed for the selective elimination of unwanted or malignant cells. Saporin-S6, a type 1 RIP extracted from Saponaria officinalis L. seeds, has been extensively employed to construct anticancer conjugates because of its high enzymatic activity, stability and resistance to conjugation procedures, resulting in the efficient killing of target cells. Here we investigated the anticancer properties of two saporin-based ITs, anti-CD20 RTX/S6 and anti-CD22 OM124/S6, designed for the experimental treatment of B-cell NHLs. Both ITs showed high cytotoxicity towards CD20-positive B-cells, and their antitumor efficacy was enhanced synergistically by a combined treatment with proteasome inhibitors or fludarabine. Furthermore, the two ITs showed differencies in potency and ability to activate effector caspases, and a different behavior in the presence of the ROS scavenger catalase. Taken together, these results suggest that the different carriers employed to target saporin might influence saporin intracellular routing and saporin-induced cell death mechanisms. We also investigated the early cellular response to stenodactylin, a recently discovered highly toxic type 2 RIP representing an interesting candidate for the design and production of a new IT for the experimental treatment of cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of molecular processes involved in cancer development and prognosis opened avenues for targeted therapies, which made treatment more tumor-specific and less toxic than conventional therapies. One important example is the epidermal growth factor receptor (EGFR) and EGFR-specific inhibitors (i.e. erlotinib). However, challenges such as drug resistance still remain in targeted therapies. Therefore, novel candidate compounds and new strategies are needed for improvement of therapy efficacy. Shikonin and its derivatives are cytotoxic constituents in traditional Chinese herbal medicine Zicao (Lithospermum erythrorhizin). In this study, we investigated the molecular mechanisms underlying the anti-cancer effects of shikonin and its derivatives in glioblastoma cells and leukemia cells. Most of shikonin derivatives showed strong cytotoxicity towards erlotinib-resistant glioblastoma cells, especially U87MG.ΔEGFR cells which overexpressed a deletion-activated EGFR (ΔEGFR). Moreover, shikonin and some derivatives worked synergistically with erlotinib in killing EGFR-overexpressing cells. Combination treatment with shikonin and erlotinib overcame the drug resistance of these cells to erlotinib. Western blotting analysis revealed that shikonin inhibited ΔEGFR phosphorylation and led to corresponding decreases in phosphorylation of EGFR downstream molecules. By means of Loewe additivity and Bliss independence drug interaction models, we found erlotinb and shikonin or its derivatives corporately suppressed ΔEGFR phosphorylation. We believed this to be a main mechanism responsible for their synergism in U87MG.ΔEGFR cells. In leukemia cells, which did not express EGFR, shikonin and its derivatives exhibited even greater cytotoxicity, suggesting the existence of other mechanisms. Microarray-based gene expression analysis uncovered the transcription factor c-MYC as the commonly deregulated molecule by shikonin and its derivatives. As validated by Western blotting analysis, DNA-binding assays and molecular docking, shikonin and its derivatives bound and inhibited c-MYC. Furthermore, the deregulation of ERK, JNK MAPK and AKT activity was closely associated with the reduction of c-MYC, indicating the involvement of these signaling molecules in shikonin-triggered c-MYC inactivation. In conclusion, the inhibition of EGFR signaling, synergism with erlotinib and targeting of c-MYC illustrate the multi-targeted feature of natural naphthoquinones such as shikonin and derivatives. This may open attractive possibilities for their use in a molecular targeted cancer therapy.