998 resultados para 060199 Biochemistry and Cell Biology not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane. In the present study we have conducted a comprehensive proteomic analysis of affinity-purified GLUT4 vesicles from 3T3-L1 adipocytes to discover potential regulators of GLUT4 trafficking. In addition to previously identified components of GLUT4 storage vesicles including the insulin-regulated aminopeptidase insulin-regulated aminopeptidase and the vesicle soluble N-ethylmaleimide factor attachment protein (v-SNARE) VAMP2, we have identified three new Rab proteins, Rab10, Rab11, and Rab14, on GLUT4 vesicles. We have also found that the putative Rab GTPase-activating protein AS160 (Akt substrate of 160 kDa) is associated with GLUT4 vesicles in the basal state and dissociates in response to insulin. This association is likely to be mediated by the cytosolic tail of insulin-regulated aminopeptidase, which interacted both in vitro and in vivo with AS160. Consistent with an inhibitory role of AS160 in the basal state, reduced expression of AS160 in adipocytes using short hairpin RNA increased plasma membrane levels of GLUT4 in an insulin-independent manner. These findings support an important role for AS160 in the insulin regulated trafficking of GLUT4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phylum Planctomycetes of the domain Bacteria consists of budding, peptidoglycan-less organisms important for understanding the origins of complex cell organization. Their significance for cell biology lies in their possession of intracellular membrane compartmentation. All planctomycetes share a unique cell plan, in which the cell cytoplasm is divided into compartments by one or more membranes, including a major cell compartment containing the nucleoid. Of special significance is Gemmata obscuriglobus, in which the nucleoid is enveloped in two membranes to form a nuclear body that is analogous to the structure of a eukaryotic nucleus. Planctomycete compartmentation may have functional physiological roles, as in the case of anaerobic ammonium-oxidizing anammox planctomycetes, in which the anammoxosome harbors specialized enzymes and is wrapped in an envelope possessing unique ladderane lipids. Organisms in phyla other than the phylum Planctomycetes may possess compartmentation similar to that of some planctomycetes, as in the case of members of the phylum Poribacteria from marine sponges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of C-beta atoms in other residues within a sphere around the C-beta atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence. Results: We predict contact number from protein sequence using a novel support vector regression algorithm. Using protein local sequences with multiple sequence alignments (PSI-BLAST profiles), we demonstrate a correlation coefficient between predicted and observed contact numbers of 0.70, which outperforms previously achieved accuracies. Including additional information about sequence weight and amino acid composition further improves prediction accuracies significantly with the correlation coefficient reaching 0.73. If residues are classified as being either contacted or non-contacted, the prediction accuracies are all greater than 77%, regardless of the choice of classification thresholds. Conclusion: The successful application of support vector regression to the prediction of protein contact number reported here, together with previous applications of this approach to the prediction of protein accessible surface area and B-factor profile, suggests that a support vector regression approach may be very useful for determining the structure-function relation between primary sequence and higher order consecutive protein structural and functional properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray crystallography is the most powerful method for determining the three-dimensional structure of biological macromolecules. One of the major obstacles in the process is the production of high-quality crystals for structure determination. All too often, crystals are produced that are of poor quality and are unsuitable for diffraction studies. This review provides a compilation of post-crystallization methods that can convert poorly diffracting crystals into data-quality crystals. Protocols for annealing, dehydration, soaking and cross-linking are outlined and examples of some spectacular changes in crystal quality are provided. The protocols are easily incorporated into the structure-determination pipeline and a practical guide is provided that shows how and when to use the different post-crystallization treatments for improving crystal quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian cells harbor numerous small non-protein-coding RNAs, including small nucleolar RNAs (snoRNAs), microRNAs (miRNAs), short interfering RNAs (siRNAs) and small double-stranded RNAs, which regulate gene expression at many levels including chromatin architecture, RNA editing, RNA stability, translation, and quite possibly transcription and splicing. These RNAs are processed by multistep pathways from the introns and exons of longer primary transcripts, including protein-coding transcripts. Most show distinctive temporal- and tissue-specific expression patterns in different tissues, including embryonal stem cells and the brain, and some are imprinted. Small RNAs control a wide range of developmental and physiological pathways in animals, including hematopoietic differentiation, adipocyte differentiation and insulin secretion in mammals, and have been shown to be perturbed in cancer and other diseases. The extent of transcription of non-coding sequences and the abundance of small RNAs suggests the existence of an extensive regulatory network on the basis of RNA signaling which may underpin the development and much of the phenotypic variation in mammals and other complex organisms and which may have different genetic signatures from sequences encoding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polypeptide backbones and side chains of proteins are constantly moving due to thermal motion and the kinetic energy of the atoms. The B-factors of protein crystal structures reflect the fluctuation of atoms about their average positions and provide important information about protein dynamics. Computational approaches to predict thermal motion are useful for analyzing the dynamic properties of proteins with unknown structures. In this article, we utilize a novel support vector regression (SVR) approach to predict the B-factor distribution (B-factor profile) of a protein from its sequence. We explore schemes for encoding sequences and various settings for the parameters used in SVR. Based on a large dataset of high-resolution proteins, our method predicts the B-factor distribution with a Pearson correlation coefficient (CC) of 0.53. In addition, our method predicts the B-factor profile with a CC of at least 0.56 for more than half of the proteins. Our method also performs well for classifying residues (rigid vs. flexible). For almost all predicted B-factor thresholds, prediction accuracies (percent of correctly predicted residues) are greater than 70%. These results exceed the best results of other sequence-based prediction methods. (C) 2005 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, there have been increasing numbers of transcripts identified that do not encode proteins, many of which are developmentally regulated and appear to have regulatory functions. Here, we describe the construction of a comprehensive mammalian noncoding RNA database (RNAdb) which contains over 800 unique experimentally studied noncoding RNAs (ncRNAs), including many associated with diseases and/or developmental processes. The database is available at http://research.imb.uq. edu.au/RNAdb and is searchable by many criteria. It includes microRNAs and snoRNAs, but not infrastructural RNAs, such as rRNAs and tRNAs, which are catalogued elsewhere. The database also includes over 1100 putative antisense ncRNAs and almost 20000 putative ncRNAs identified in high-quality murine and human cDNA libraries, with more to be added in the near future. Many of these RNAs are large, and many are spliced, some alternatively. The database will be useful as a foundation for the emerging field of RNomics and the characterization of the roles of ncRNAs in mammalian gene expression and regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multi-tasking protein that acts in the cytoplasm and nucleus. We have explored the possibility that this protein is associated with telomeres and participates in their maintenance. Rat brain hnRNP A2 was shown to have two nucleic acid binding sites. In the presence of heparin one site binds single-stranded oligodeoxyribonucleotides irrespective of sequence but not the corresponding oligoribonucleotides. Both the hnRNP A2-binding cis-acting element for the cytoplasmic RNA trafficking element, A2RE, and the ssDNA telomere repeat match a consensus sequence for binding to a second sequence-specific site identified by mutational analysis. hnRNP A2 protected the telomeric repeat sequence, but not the complementary sequence, against DNase digestion: the glycine-rich domain was found to be necessary, but not sufficient, for protection. The N-terminal RRM (RNA recognition motif) and tandem RRMs of hnRNP A2 also bind the single-stranded, template-containing segment of telomerase RNA. hnRNP A2 colocalizes with telomeric chromatin in the subset of PML bodies that are a hallmark of ALT cells, reinforcing the evidence for hnRNPs having a role in telomere maintenance. Our results support a model in which hnRNP A2 acts as a molecular adapter between single-stranded telomeric repeats, or telomerase RNA, and another segment of ssDNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection of point mutations or single nucleotide polymorphisms (SNPs) is important in relation to disease susceptibility or detection in pathogens of mutations determining drug resistance or host range. There is an emergent need for rapid detection methods amenable to point-of-care applications. The purpose of this study was to reduce to practice a novel method for SNP detection and to demonstrate that this technology can be used downstream of nucleic acid amplification. The authors used a model system to develop an oligonucleotide-based SNP detection system on nitrocellulose lateral flow strips. To optimize the assay they used cloned sequences of the herpes simplex virus-1 (HSV-1) DNA polymerase gene into which they introduced a point mutation. The assay system uses chimeric polymerase chain reaction (PCR) primers that incorporate hexameric repeat tags ("hexapet tags"). The chimeric sequences allow capture of amplified products to predefined positions on a lateral flow strip. These "hexapet" sequences have minimal cross-reactivity and allow specific hybridization-based capture of the PCR products at room temperature onto lateral flow strips that have been striped with complementary hexapet tags. The allele-specific amplification was carried out with both mutant and wild-type primer sets present in the PCR mix ("competitive" format). The resulting PCR products carried a hexapet tag that corresponded with either a wild-type or mutant sequence. The lateral flow strips are dropped into the PCR reaction tube, and mutant sequence and wild-type sequences diffuse along the strip and are captured at the corresponding position on the strip. A red line indicative of a positive reaction is visible after 1 minute. Unlike other systems that require separate reactions and strips for each target sequence, this system allows multiplex PCR reactions and multiplex detection on a single strip or other suitable substrates. Unambiguous visual discrimination of a point mutation under room temperature hybridization conditions was achieved with this model system in 10 minutes after PCR. The authors have developed a capture-based hybridization method for the detection and discrimination of HSV-1 DNA polymerase genes that contain a single nucleotide change. It has been demonstrated that the hexapet oligonucleotides can be adapted for hybridization on the lateral flow strip platform for discrimination of SNPs. This is the first step in demonstrating SNP detection on lateral flow using the hexapet oligonucleotide capture system. It is anticipated that this novel system can be widely used in point-of-care settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents the proceedings of a symposium presented at the ISBRA 12th World Congress on Biomedical Alcohol Research, held in Heidelberg/Mannheim, Germany, September 29 through October 2, 2004. The organizers of the symposium were Simon Worrall and Victor Preedy, and the symposium was chaired by Onni Niemelä and Geoffrey Thiele. The presentations scheduled for this symposium were (1) Adduct chemistry and mechanisms of adduct formation, by Thomas L. Freeman; (2) Malondialdehyde- acetaldehyde adducts: the 2004 update, by Geoffrey Thiele; (3) Adduct formation in the liver, by Simon Worrall; (4) Protein adducts in alcoholic cardiomyopathy, by Onni Niemelä; and (5) Alcoholic skeletal muscle myopathy: a role for protein adducts, by Victor R. Preedy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extension of the conjugated pi-system of many all-protein chromophores with an acylimine bond is the basis for their red-shifted optical properties. The presence of this post-translational modification is evident in crystal structures of these proteins. Harsh denaturation of proteins containing an acylimine bond results in partial polypeptide cleavage. For the red fluorescent protein DsRed, the extent of cleavage is quantitative. However, this is not the case for the blue non-fluorescent chromoprotein Rtms5, even though all chromophores in tetrameric Rtms5 contain an acylimine bond. We have identified two positions around the chromophore of Rtms5 where substitutions can promote or suppress the extent of cleavage on harsh denaturation. We propose a model in which cleavage of Rtms5 is facilitated by a trans to cis isomerisation of the chromophore. (c) 2006 Elsevier Inc. All rights reserved.