998 resultados para 060199 Biochemistry and Cell Biology not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several pathogenic strains of Escherichia coli exploit type III secretion to inject effector proteins into human cells, which then subvert eukaryotic cell biology to the bacterium's advantage. We have exploited bioinformatics and experimental approaches to establish that the effector repertoire in the Sakai strain of enterohemorrhagic E. coli (EHEC) O157:H7 is much larger than previously thought. Homology searches led to the identification of > 60 putative effector genes. Thirteen of these were judged to be likely pseudogenes, whereas 49 were judged to be potentially functional. In total, 39 proteins were confirmed experimentally as effectors: 31 through proteomics and 28 through translocation assays. At the protein level, the EHEC effector sequences fall into > 20 families. The largest family, the NleG family, contains 14 members in the Sakai strain alone. EHEC also harbors functional homologs of effectors from plant pathogens (HopPtoH, HopW, AvrA) and from Shigella (OspD, OspE, OspG), and two additional members of the Map/IpgB family. Genes encoding proven or predicted effectors occur in > 20 exchangeable effector loci scattered throughout the chromosome. Crucially, the majority of functional effector genes are encoded by nine exchangeable effector loci that lie within lambdoid prophages. Thus, type III secretion in E. coli is linked to a vast phage metagenome, acting as a crucible for the evolution of pathogenicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Side population (SP) cells in the adult kidney are proposed to represent a progenitor population. However, the size, origin, phenotype, and potential of the kidney SP has been controversial. In this study, the SP fraction of embryonic and adult kidneys represented 0.1 to 0.2% of the total viable cell population. The immunophenotype and the expression profile of kidney SP cells was distinct from that of bone marrow SP cells, suggesting that they are a resident nonhematopoietic cell population. Affymetrix expression profiling implicated a role for Notch signaling in kidney SP cells and was used to identify markers of kidney SP. Localization by in situ hybridization confirmed a primarily proximal tubule location, supporting the existence of a tubular niche, but also revealed considerable heterogeneity, including the presence of renal macrophages. Adult kidney SP cells demonstrated multilineage differentiation in vitro, whereas microinjection into mouse metanephroi showed that SP cells had a 3.5- to 13-fold greater potential to contribute to developing kidney than non-SP main population cells. However, although reintroduction of SP cells into an Adriamycin-nephropathy model reduced albuminuria:creatinine ratios, this was without significant tubular integration, suggesting a humoral role for SP cells in renal repair. The heterogeneity of the renal SP highlights the need for further fractionation to distinguish the cellular subpopulations that are responsible for the observed multilineage capacity and transdifferentiative and humoral activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have determined the three-dimensional structure of the protein complex between latexin and carboxypeptidase A using a combination of chemical cross-linking, mass spectrometry and molecular docking. The locations of three intermolecular cross-links were identified using mass spectrometry and these constraints were used in combination with a speed-optimised docking algorithm allowing us to evaluate more than 3 x 10(11) possible conformations. While cross-links represent only limited structural constraints, the combination of only three experimental cross-links with very basic molecular docking was sufficient to determine the complex structure. The crystal structure of the complex between latexin and carboxypeptidase A4 determined recently allowed us to assess the success of this structure determination approach. Our structure was shown to be within 4 angstrom r.m.s. deviation of C alpha atoms of the crystal structure. The study demonstrates that cross-linking in combination with mass spectrometry can lead to efficient and accurate structural modelling of protein complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepcidin is a liver-expressed antimicrobial and iron regulatory peptide. A number of studies have indicated that hepcidin is important for the correct regulation of body iron homeostasis. The aims of this study were to analyse the expression, trafficking and regulation of human hepcidin in an in vitro cell culture system. Human hepcidin was transfected into human embryonic kidney cells. Immunofluorescence and confocal microscopy analysis revealed that recombinant hepcidin localised to the Golgi complex. Recombinant hepcidin is secreted from the cell within 1 h of its synthesis. Recombinant hepcidin was purified from the cell culture medium using ion-exchange and metal-affinity chromatography and was active in antimicrobial assays. Amino-terminal sequence analysis of the secreted peptide revealed that it was the mature 25 amino acid form of hepcidin. Our results show that recombinant myc-His tagged human hepcidin was expressed, processed and secreted correctly and biologically active in antimicrobial assays. (C) 2005 Elsevier SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a sensitive, non-radioactive method to assess the interaction of transcription factors/DNA-binding proteins with DNA. We have modified the traditional radiolabeled DNA gel mobility shift assay to incorporate a DNA probe end-labeled with a Texas-red fluorophore and a DNA-binding protein tagged with the green fluorescent protein to monitor precisely DNA-protein complexation by native gel electrophoresis. We have applied this method to the DNA-binding proteins telomere release factor-1 and the sex-determining region-Y, demonstrating that the method is sensitive (able to detect 100 fmol of fluorescently labeled DNA), permits direct visualization of both the DNA probe and the DNA-binding protein, and enables quantitative analysis of DNA and protein complexation, and thereby an estimation of the stoichiometry of protein-DNA binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Passerine spermatozoa exhibit apomorphies that distinguish them from non-passerine neognaths and palaeognaths. The acrosome is longer than the nucleus (excepting the suboscines, most Corvida, and a few Passerida). A perforatorium and endonuclear canals are absent. The proximal centriole is absent (except in the suboscines). The distal centriole is secondarily short, contrasting with its elongate condition in palaeognaths and Galloanserae. In the Passerida a single mitochondrial strand winds extensively along the axoneme (restricted to the anterior axoneme in suboscines and Corvida). A fibrous, or amorphous, periaxonemal sheath, seen in palaeognaths and many non-passerines, respectively, is absent. The acrosome in Myrmecocichla formicivora and Philetairus socius is bipartite: an acrosome core is surmounted by an acrosome crest; the core is ensheathed by a layer which is a posterior extension of the crest. The acrosome helix is a lateral extension of the crest and the crest layer with (Myrmecocichla) or without (Philetairus) protrusion of material of the acrosome core into it. In M. formicivora, as in other muscicapoids, a fibrous helix is intertwined with at least the more proximal region of the mitochondrial helix. The fibrous helix is absent at maturity in Philetairus and other described passeroid spermatozoa with the possible exception of Passer italiae. In Philetairus a granular helix precedes the mitochondrial helix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Determination of the subcellular location of a protein is essential to understanding its biochemical function. This information can provide insight into the function of hypothetical or novel proteins. These data are difficult to obtain experimentally but have become especially important since many whole genome sequencing projects have been finished and many resulting protein sequences are still lacking detailed functional information. In order to address this paucity of data, many computational prediction methods have been developed. However, these methods have varying levels of accuracy and perform differently based on the sequences that are presented to the underlying algorithm. It is therefore useful to compare these methods and monitor their performance. Results: In order to perform a comprehensive survey of prediction methods, we selected only methods that accepted large batches of protein sequences, were publicly available, and were able to predict localization to at least nine of the major subcellular locations (nucleus, cytosol, mitochondrion, extracellular region, plasma membrane, Golgi apparatus, endoplasmic reticulum (ER), peroxisome, and lysosome). The selected methods were CELLO, MultiLoc, Proteome Analyst, pTarget and WoLF PSORT. These methods were evaluated using 3763 mouse proteins from SwissProt that represent the source of the training sets used in development of the individual methods. In addition, an independent evaluation set of 2145 mouse proteins from LOCATE with a bias towards the subcellular localization underrepresented in SwissProt was used. The sensitivity and specificity were calculated for each method and compared to a theoretical value based on what might be observed by random chance. Conclusion: No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application to hypothetical proteins. All methods showed lower performance on the LOCATE dataset and variable performance on individual subcellular localizations was observed. Proteins localized to the secretory pathway were the most difficult to predict, while nuclear and extracellular proteins were predicted with the highest sensitivity.

Relevância:

100.00% 100.00%

Publicador: