1000 resultados para 030399 Macromolecular and Materials Chemistry not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In celebrating Professor C. N. R. Rao's 80th birthday, this article recalls his singular contributions to solid state and materials chemistry for about sixty years. In so doing, the article also traces the growth of the field as a central domain of research in chemical sciences from its early origins in Europe. Although Rao's major work lies in solid state and materials chemistry - a field which he started and nurtured in India while its importance was being recognized internationally - his contributions to other areas of chemistry (and physics), viz., molecular spectroscopy, phase transitions, fullerenes, graphene, nanomaterials and multiferroics are equally significant. Illustrative examples of his work devoted to rare earth and transition metal oxides, defects and nonstoichiometry, metal-insulator transitions, investigation of crystal and electronic structures of a variety of solids by means of electron microscopies and photoelectron spectroscopy, superconducting cuprates, magnetoresistive manganites, multiferroic metal oxides of various structures and, last but not the least, development of new strategies for chemical synthesis of a wide variety of solids including nanomaterials and framework solids in different dimensionalities, are highlighted. The article also captures his exemplary role as a science teacher, science educationist and institution builder in post-Independence India.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binding interaction of the pesticide Isoprocarb and its degradation product, sodium 2-isopropylphenate, with bovine serum albumin (BSA) was studied by spectrofluorimetry under simulated physiological conditions. Both Isoprocarb and sodium 2-isopropylphenate quenched the intrinsic fluorescence of BSA. This quenching proceeded via a static mechanism. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) obtained from the fluorescence data measured at two different temperatures showed that the binding of Isoprocarb to BSA involved hydrogen bonds and that of sodium 2-isopropylphenate to BSA involved hydrophobic and electrostatic interactions. Synchronous fluorescence spectroscopy of the interaction of BSA with either Isoprocarb or sodium 2-isopropylphenate showed that the molecular structure of the BSA was changed significantly, which is consistent with the known toxicity of the pesticide, i.e., the protein is denatured. The sodium 2-isopropylphenate, was estimated to be about 4–5 times more toxic than its parent, Isoprocarb. Synchronous fluorescence spectroscopy and the resolution of the three-way excitation–emission fluorescence spectra by the PARAFAC method extracted the relative concentration profiles of BSA, Isoprocab and sodium 2-isopropylphenate as a function of the added sodium 2-isopropylphenate. These profiles showed that the degradation product, sodium 2-isopropylphenate, displaced the pesticide in a competitive reaction with the BSA protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels provide a 3-dimensional network for embedded cells and offer promise for cartilage tissue engineering applications. Nature-derived hydrogels, including alginate, have been shown to enhance the chondrocyte phenotype but are variable and not entirely controllable. Synthetic hydrogels, including polyethylene glycol (PEG)-based matrices, have the advantage of repeatability and modularity; mechanical stiffness, cell adhesion, and degradability can be altered independently. In this study, we compared the long-term in vitro effects of different hydrogels (alginate and Factor XIIIa-cross-linked MMP-sensitive PEG at two stiffness levels) on the behavior of expanded human chondrocytes and the development of construct properties. Monolayer-expanded human chondrocytes remained viable throughout culture, but morphology varied greatly in different hydrogels. Chondrocytes were characteristically round in alginate but mostly spread in PEG gels at both concentrations. Chondrogenic gene (COL2A1, aggrecan) expression increased in all hydrogels, but alginate constructs had much higher expression levels of these genes (up to 90-fold for COL2A1), as well as proteoglycan 4, a functional marker of the superficial zone. Also, chondrocytes expressed COL1A1 and COL10A1, indicative of de-differentiation and hypertrophy. After 12 weeks, constructs with lower polymer content were stiffer than similar constructs with higher polymer content, with the highest compressive modulus measured in 2.5% PEG gels. Different materials and polymer concentrations have markedly different potency to affect chondrocyte behavior. While synthetic hydrogels offer many advantages over natural materials such as alginate, they must be further optimized to elicit desired chondrocyte responses for use as cartilage models and for development of functional tissue-engineered articular cartilage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential pulse stripping voltammetry method(DPSV) was applied to the determination of three herbicides, ametryn, cyanatryn, and dimethametryn. It was found that their voltammograms overlapped strongly, and it is difficult to determine these compounds individually from their mixtures. With the aid of chemometrics, classical least squares(CLS), principal component regression(PCR) and partial least squares(PLS), voltammogram resolution and quantitative analysis of the synthetic mixtures of the three compounds were successfully performed. The proposed method was also applied to the analysis of some real samples with satisfactory results.