992 resultados para 020108 Planetary Science (excl. Extraterrestrial Geology)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unusual behaviour of fine lunar regolith like stickiness and low heat conductivity is dominated by the structural arrangement of its finest fraction. Here, we show the previously unknown phenomenon of a globular 3D superstructure within the dust fraction of regolith. A study using the recently developed Transmission X-ray Microscopy (TXM) with tomographic reconstruction reveals a highly porous network of cellular voids in the finest dust fraction aggregates in lunar soil. Such porous chained aggregates are composed of sub-micron particles that form a network of cellular voids a few micrometers in diameter. Discovery of such a superstructure within the finest fraction of lunar topsoil enables a model of heat transfer to be constructed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unusual behaviour of fine lunar regolith like stickiness and low heat conductivity is dominated by the structural arrangement of its finest fraction in the outer-most topsoil layer. Here, we show the previously unknown phenomenon of building a globular 3-D superstructure within the dust fraction of the regolith. New technology, Transmission X-ray Microscopy (TXM) with tomographic reconstruction, reveals a highly porous network of cellular void system in the lunar finest dust fraction aggregates. Such porous chained aggregates are composed of sub-micron in size particles that build cellular void networks. Voids are a few micrometers in diameter. Discovery of such a superstructure within the finest fraction of the lunar topsoil allow building a model of heat transfer which is discussed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have measured the bidirectional reflectance of spherical micrometer-sized water-ice particles in the visible spectral range over a wide range of incidence and emission angles. The small ice spheres were produced by spraying fine water droplets directly into liquid nitrogen. The resulting mean particle radii are 1.47 + 0.96 - 0.58 μm. Such a material shares many properties with ice in comets and at the surface of icy satellites. Measurements show that the fresh sample material is highly backscattering, contrasting with natural terrestrial snow and frost. The formation of agglomerates of particles during the sample production results in a noticeable variability of the photometric properties of the samples in their initial state. We have also observed significant temporal evolutions of the scattering behavior of the samples, shifting towards more forward scattering within some tens of hours, resulting most likely from sintering processes. All reflectance data are fitted by the Hapke photometric model (1993 and 2002 formulation) with a one/two/three-parameter Henyey-Greenstein phase function and the resulting Hapke parameters are provided. These parameters can be used to compare laboratory results with the observed photometric behaviors of astronomical objects. We show, in particular, that the optical properties of the fresh micrometer-sized ice samples can be used to reproduce the predominant backscattering in the phase curves of Enceladus and Europa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new set of primitive extraterrestrial materials collected in the Earth's stratosphere include Chondritic Porous Aggregates (CPA's) [1]. CPAs have a complex and variable mineralogy [1-3] that include 'organic compounds' [4,5] and poorly graphitised carbon (PGC)[6]. This study presents a continuation of our detailed Analytical Electron Microscope study on carbon-rich CPA W7029*A from the JSC Cosmic Dust Collection. This CPA is an uncontaminated sample that survived atmospheric entry without appreciable alteration [7] and which contains ~44% carbonaceous material. The carbonaceous composition of selected particles was confirmed by Electron Energy Loss Spectroscopy and Selected Area Electron Diffraction (SAED). Possible carbonaceous contaminants introduced by specimen preparation techniques are easily recognised from indigenous CPA carbon particles [8] and do not bias our interpretations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing number of stratospheric particles available for study (via the U2 and/or WB57F collections), it is essential that a simple, yet rational, classification scheme be developed for general use. Such a scheme should be applicable to all particles collected from the stratosphere, rather than limited to only extraterrestial or chemical sub-groups. Criteria for the efficacy of such a scheme would include: (a) objectivity , (b) ease of use, (c) acceptance within the broader scientific community and (d) how well the classification provides intrinsic categories which are consistent with our knowledge of particle types present in the stratosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poorly characterized phases (PCP's) may constitute up to 30 volume percent of some C2M carbonaceous chondrite matrices [1] and are an important key to an understanding of matrix evolution. PCPs are usually fine-grained (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important component of current models for interstellar and circumstellar evolution is the infrared (IR)spectral data collected from stellar outflows around oxygen-rich stars and from the general interstellar medium [1]. IR spectra from these celestial bodies are usually interpreted as showing the general properties of sub-micron sized silicate grains [2]. Two major features at 10 and 20 microns are reasonably attributed to amorphous olivine or pyroxene (e.g. Mg2Si04 or MgSi03) on the basis of comparisons with natural standards and vapor condensed silicates [3-6]. In an attempt to define crystallisation rates for spectrally amorphous condensates, Nuth and Donn [5] annealed experimentally produced amorphous magnesium silicate smokes at 1000K. On analysing these smokes at various annealing times, Nuth and Donn [5] showed that changes in crystallinity measured by bulk X-ray diffraction occured at longer annealing times (days) than changes measured by IR spectra (a few hours). To better define the onset of crystallinity in these magnesium silicates, we have examined each annealed product using a JEOL 1OOCX analytical electron microscope (AEM). In addition, the development of chemical diversity with annealing has been monitored using energy dispersive spectroscopy of individual grains from areas <20nm in diameter. Furthermore, the crystallisation kinetics of these smokes under ambient, room temperature conditions have been examined using bulk and fourier transform infrared (FTIR)spectra.