937 resultados para n-linked glycoproteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new one-dimensional heterometallic complexes, Mn3Na(L)(4)(CH3CO2)(MeOH)(2)]-(ClO4)(2)center dot 3H(2)O (1), Mn3Na(L)(4)(CH3CH2CO2)-(MeOH)(2)](ClO4)(2)center dot 2MeOH center dot H2O (2) LH2 = 2-methyl-2-(2-pyridyl)propane-1,3-diol], have been synthesized and characterized by X-ray crystallography. Both complexes feature Mn-II and Na-I ions in trigonal-prismatic geometries that are linked to octahedral Mn-IV ions by alkoxy bridges. Variable-temperature direct- and alternating-current magnetic susceptibility data indicated a spin ground state of S = 11/2 for both complexes. Density functional theory calculations performed on 1 supported this conclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of 1,4-disubstituted 1,2,3-bistriazoles was synthesized via click chemistry by cycloaddition of various bisalkynes with benzyl/2-phenylethyl azide. Synthesized triazoles were characterized by IR, H-1 NMR, C-13 NMR and mass spectral techniques. All the compounds were evaluated for antibacterial/antifungal activities and found to possess moderate to good antimicrobial activities. Further the docking study for the most active compound against DNA Gyrase was also carried out. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduced-graphene oxide (rGO) sheets have been functionalized by covalently linking beta-cyclodextrin (beta CD) cavities to the sheets via an amide linkage. The functionalized beta-CD:rGO sheets, in contrast to rGO, are dispersible over a wide range of pH values (2-13). Zeta potential measurements indicate that there is more than one factor responsible for the dispersibility. We show here that planar aromatic molecules adsorbed on the rGO sheet as well as nonplanar molecules included in the tethered beta-CD cavities have their fluorescence effectively quenched by the beta-CD:rGO sheets. The beta-CD:rGO sheets combine the hydrophobicity associated with rGO along with the hydrophobicity of the cyclodextrin cavities in a single water-dispersible material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of sulfone linked bis heterocycles viz., pyrrolyl/pyrazolyl arylaminosulfonylmethyl 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, and 1,2,4-triazoles were prepared and tested for antimicrobial activity and cytotoxicity. The chloro-substituted compounds 5c, 8c and 14c showed comparable antibacterial activity to chloramphenicol against Pseudomonasaeruginosa and compound 5c exhibited comparable antifungal activity to ketoconazole against Penicilliumchrysogenum. One of the compounds, vinylsulfonyl oxadiazole showed appreciably cytotoxic activity on A549 lung carcinoma cells with an IC50 at a concentration of 31.7 mu M. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potyviruses temporally regulate their protein function by polyprotein processing. Previous studies have shown that VPg (Viral Protein genome-linked) of Pepper vein banding virus interacts with the NIa-Pro (Nuclear Inclusion-a protease) domain, and modulates the kinetics of the protease. In the present study, we report for the first time that VPg harbors the Walker motifs A and B, and the presence of NIa-Pro, especially in cis (cleavage site (E191A) VPg-Pro mutant), is essential for manifestation of the ATPase activity. Mutation of Lys47 (Walker motif A) and Asp88:Glu89 (Walker motif B) to alanine in E191A VPg-Pro lead to reduced ATPase activity, confirming that this activity was inherent to VPg. We propose that potyviral VPg, established as an intrinsically disordered domain, undergoes plausible structural alterations upon interaction with globular NIa-Pro which induces the ATPase activity. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Modified starches based polymeric substances find utmost applicability in pharmaceutical formulation development. Cross-linked starches showed very promising results in drug delivery application. The present investigation concerns with the development of controlled release tablets of lamivudine using cross-linked sago starch. Methods: The cross-linked derivative was synthesized with phosphorous oxychloride and native sago starch in basic pH medium. The cross-linked sago starch was tested for acute toxicity and drug-excipient compatibility study. The formulated tablets were evaluated for various physical characteristics, in vitro dissolution release study and in vivo pharmacokinetic study in rabbit model. Results: In vitro release study showed that the optimized formulation exhibited highest correlation (R) in case of zero order kinetic model and the release mechanism followed a combination of diffusion and erosion process. There was a significant difference in the pharmacokinetic parameters (T-max, C-max, AUC, V-d, T-1/2, and MDT) of the optimized formulation as compared to the marketed conventional tablet Lamivir (R). Conclusion: The cross-linked starch showed promising results in terms of controlling the release behavior of the active drug from the matrix. The hydrophilic matrix synthesized by cross-linking could be used with a variety of active pharmaceutical ingredients for making their controlled/sustained release formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guanylyl cyclase C (GC-C) is a multidomain, membrane-associated receptor guanylyl cyclase. GC-C is primarily expressed in the gastrointestinal tract, where it mediates fluid-ion homeostasis, intestinal inflammation, and cell proliferation in a cGMP-dependent manner, following activation by its ligands guanylin, uroguanylin, or the heat-stable enterotoxin peptide (ST). GC-C is also expressed in neurons, where it plays a role in satiation and attention deficiency/hyperactive behavior. GC-C is glycosylated in the extracellular domain, and differentially glycosylated forms that are resident in the endoplasmic reticulum (130 kDa) and the plasma membrane (145 kDa) bind the ST peptide with equal affinity. When glycosylation of human GC-C was prevented, either by pharmacological intervention or by mutation of all of the 10 predicted glycosylation sites, ST binding and surface localization was abolished. Systematic mutagenesis of each of the 10 sites of glycosylation in GC-C, either singly or in combination, identified two sites that were critical for ligand binding and two that regulated ST-mediated activation. We also show that GC-C is the first identified receptor client of the lectin chaperone vesicular integral membrane protein, VIP36. Interaction with VIP36 is dependent on glycosylation at the same sites that allow GC-C to fold and bind ligand. Because glycosylation of proteins is altered in many diseases and in a tissue-dependent manner, the activity and/or glycan-mediated interactions of GC-C may have a crucial role to play in its functions in different cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of sulfonamidomethane pyrrolyl-oxadiazoles/thiadiazoles and pyrazolyl-oxadiazoles/thiadiazoles was prepared from arylsulfonylaminoacetic acid hydrazides and E-cinnamic acid. The lead compounds were tested for antimicrobial and cytotoxic activities. The thiadiazole compounds having chloro substituent on the aromatic ring 4c, 8c and 10c exhibited comparable antibacterial activity against Pseudomonas aeruginosa and also antifungal activity against Penieillium ehrysogenunz. The styryl oxadiazole compound 3c showed appreciable cytotoxic activity on A549 lung carcinoma cells which can be used as a lead compound in the future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NIS/NaN3 mediated ring opening of various donor-acceptor cyclopropanes has been investigated. The study shows the necessity of the donor oxygen lone pair in such ring opening reactions. This methodology has been utilized in the synthesis of C-1 linked pseudodisaccharides through the use of click chemistry. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 degrees C, which increases to 17 degrees C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 degrees C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (<7%), as quantified by propidium iodide (PI) stained cells. Hence, these polyesters can be used as implant materials for localized, sustained delivery of salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A convenient protocol is developed for the synthesis of 3 `-N-(fluorenylmethoxycarbonyl)-amino]-5 `-carboxymethyl derivatives of all four natural ribonucleosides from cheap chiral pool compound glucose. Synthesis of fully amide-linked RNA analogues of small oligonucleotides containing, for the first time, all four nucleoside amino acids using standard solid phase Fmoc-chemistry is described. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bio-nanocomposites have been developed using cross-linked chitosan and cross-linked thermoplastic starch along with acid functionalized multiwalled carbon nanotubes (f-MWCNT). The nanocomposites developed were characterized for mechanical, wear, and thermal properties. The results revealed that the nanocomposites exhibited enhanced mechanical properties. The composites containing 3% f-MWCNT showed maximum compression strength. Tribological studies revealed that, with the addition of small amount of f-MWCNTs the slide wear loss reduced up to 25%. SEM analysis of the nanocomposites showed predominantly brittle fractured surface. Thermal analysis showed that the incorporation of f-MWCNTs has improved the thermal stability for the nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an unusual, isomer-selective gelation of aromatic solvents by a polymorph of a urea-linked bile acid-amino acid conjugate. The gelator showed selectivity towards gelation of 1,2-disubstituted aromatic solvents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a continuous surge toward developing new biopolymers that exhibit better in vivo biocompatibility properties in terms of demonstrating a reduced foreign body response (FBR). One approach to mitigate the undesired FBR is to develop an implant capable of releasing anti-inflammatory molecules in a sustained manner over a long time period. Implants causing inflammation are also more susceptible to infection. In this article, the in vivo biocompatibility of a novel, biodegradable salicylic acid releasing polyester (SAP) has been investigated by subcutaneous implantation in a mouse model. The tissue response to SAP was compared with that of a widely used biodegradable polymer, poly(lactic acid-co-glycolic acid) (PLGA), as a control over three time points: 2, 4, and 16 weeks postimplantation. A long-term in vitro study illustrates a continuous, linear (zero order) release of salicylic acid with a cumulative mass percent release rate of 7.34 x 10(-4) h(-1) over similar to 1.5-17 months. On the basis of physicochemical analysis, surface erosion for SAP and bulk erosion for PLGA have been confirmed as their dominant degradation modes in vivo. On the basis of the histomorphometrical analysis of inflammatory cell densities and collagen distribution as well as quantification of proinflammatory cytokine levels (TNF-alpha and IL-1 beta), a reduced foreign body response toward SAP with respect to that generated by PLGA has been unambiguously established. The favorable in vivo tissue response to SAP, as manifest from the uniform and well-vascularized encapsulation around the implant, is consistent with the decrease in inflammatory cell density and increase in angiogenesis with time. The above observations, together with the demonstration of long-term and sustained release of salicylic acid, establish the potential use of SAP for applications in improved matrices for tissue engineering and chronic wound healing.