955 resultados para immune response


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhodococcus equi is a Gram-positive, facultative intracellular bacterium which infects macrophages and causes rhodococcal pneumonia and enteritis in foals. Recently, this agent has been recognized as an opportunistic pathogen for immunocompromised humans. Several murine experimental models have been used to study R. equi infection. High (H IV-A) and Low (L IV-A) antibody (Ab)-producers mice were obtained by bi-directional genetic selections for their ability to produce antibodies against sheep and human erythrocytes (Selection IV-A). These lines maintain their phenotypes of high and low responders also for other antigens than those of selection (multispeciflc effect). A higher macrophage activity in L IV-A mice has been described for several intracellular infectious agents, which could be responsible for their intense macrophage antigens (Ag)-handling and low Ab production. Due to these differences, L IV-A mice were found to exhibit a better performance to trigger an effective immune response towards intracellular pathogens. The objective of this work was to characterize the immune response of Selection IV-A against R. equi. H IV-A and L IV-A mice were infected with 2.0 × 10 6 CFU of ATCC 33701 +R. equi by intravenous route. With regards to bacterial clearance and survival assays, L IV-A mice were more resistant than H IV-A mice to virulent R. equi. L IV-A mice presented a higher hydrogen peroxide (H 2O 2) and nitric oxide (NO) endogenous production by splenic macrophages than H IV-A mice. L IV-A expressed the most intense cellular response, available by the Delayed-Type Hypersensitivity (DTH) reaction, which activated macrophages and produced more H 2O 2 and NO. The three times higher specific antibodies titres in H IV-A indicated that Selection IV-A maintained the multispecific effect and the polygenic control of humoral and cellular responses also to R. equi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mice genetically selected for high (H) and low (L) antibody production (Selection IV-A) were used as murine experimental model. The aim of the present work was to evaluate the macrophagic activity and to characterize the immune response in Mycobacterium bovis-AN5 infected mice (3×10 7 bacteria). The response profile previously observed in such strains was not similar to that obtained during M. bovis infection; however, it corroborated works carried out using Selection I, which is very similar to Selection IV-A regarding infection by M. tuberculosis and Bacillus Calmette-Guérin (BCG). Considering bacterial recovery, LIV-A mice showed higher control of the infectious process in the lungs than in the spleen, whereas HIV-A mice presented more resistance in the spleen. With respect to macrophagic activity, hydrogen peroxide (H2O 2) was probably not involved in the infection control since there was an inhibition in the production of this metabolite. Nitric oxide (NO) and TNF-α production seemed to be important in the control of bacterial replication and varied according to the strain, period and organ. Evaluation of the antibody production indicated that the multi-specific effect commonly observed in these strains was not the same in the response to M. bovis. Antibody concentrations were higher in LIV-A than in HIV-A mice at the beginning of the infection, being similar afterwards. Such data were compared with delayed-type hypersensitivity (DTH), which was more intense in HIV-A than in LIV-A mice, indicating that antibody production is independent of the capability to trigger DTH reactions and that cellular and humoral responses to M. bovis antigens show a polygenic control and an independent quantitative genetic regulation. Differences were observed among organs and metabolites, suggesting that different mechanisms play an important role in this infection in natural heterogeneous populations, indicating that NO, TNF-α and Th1 cytokines are involved in the infection control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated. Methods: Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA. Results: This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life. Conclusion: These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection. © 2007 Pelizon et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclometallated palladium(II) complexes are reactive inorganic compounds employed in several biological studies because of their antitumour potential and interaction with immune system. In the present study, the immune and citotoxic response induced by two organopalladated complexes: [{Pd(N,C-dmba)} 2(μ-NCS) 2] (1), [Pd(C-dmba)(NCS)(dppp)] (2) [dmba = N,N′-dimethylbenzylamine, dppp = 1,3-bis(diphenylphosphino)propane] and cisplatin (cis-DDP), as standard, were investigated in mice bearing Ehrlich ascites tumour. The mice were divided into five groups and inoculated with the compounds (1) or (2) or cisplatin, or only vehicle or phosphate-buffered saline (PBS). Many parameters were evaluated, such as tumour cell percentage in the peritoneal exsudate, levels of seric nitric oxide (NO) and tumour necrosis factor-alpha (TNF-α) and increase in life span. Analysis of all data revealed, for compound (2), an activity similar to that presented by cisplatin, resulting in increased life span, lower levels of seric TNF-α and increase in NO production. ©2007 Sociedade Brasileira de Química.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sporotrichosis is an infection caused by the dimorphic fungus Sporothrix schenckii. Toll-like receptors (TLRs) play an important role in immunity, since they bind to pathogen surface antigens and initiate the immune response. However, little is known about the role of TLR-2 and fungal surface antigens in the recognition of S. schenckii and in the subsequent immune response. This study aimed to evaluate the involvement of TLR-2 and fungal surface soluble (SolAg) and lipidic (LipAg) antigens in phagocytosis of S. schenckii and production of immune mediators by macrophages obtained from WT and TLR-2 -/- animals. The results showed that TLR-2-/- animals had had statistical lower percentage of macrophages with internalized yeasts compared to WT. SolAg and LipAg impaired phagocytosis and immunological mediator production for both WT and TLR-2-/-. The absence of TLR-2 led to lower production of the cytokines TNF, IL-1β, IL-12 and IL-10 compared to WT animals. These results suggest a new insight in relation to how the immune system, through TLR-2, recognizes and induces the production of mediators in response to the fungus S. schenckii. Copyright © Informa Healthcare USA, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material surfaces that provide biomimetic cues, such as nanoscale architectures, have been shown to alter cell/biomaterial interactions. Recent studies have identified titania nanotube arrays as strong candidates for use in interfaces on implantable devices due to their ability to elicit improved cellular functionality. However, limited information exists regarding the immune response of nanotube arrays. Thus, in this study, we have investigated the short- and long-term immune cell reaction of titania nanotube arrays. Whole blood lysate (containing leukocytes, thrombocytes and trace amounts of erythrocytes), isolated from human blood, were cultured on titania nanotube arrays and biomedical grade titanium (as a control) for 2 hours and 2 and 7 days. In order to determine the in vitro immune response on titania nanotube arrays, immune cell functionality was evaluated by cellular viability, adhesion, proliferation, morphology, cytokine/chemokine expression, with and without lipopolysaccharide (LPS), and nitric oxide release. The results presented in this study indicate a decrease in short- and long-term monocyte, macrophage and neutrophil functionality on titania nanotube arrays as compared to the control substrate. This work shows a reduced stimulation of the immune response on titania nanotube arrays, identifying this specific nanoarchitecture as a potentially optimal interface for implantable biomedical devices. © 2013 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To investigate if the participation of Atopobium vaginae, Megasphaera sp. and Leptotrichia sp. in the bacterial community of bacterial vaginosis (BV) is associated with distinct patterns of this condition. Methods: In this cross-sectional controlled study, 205 women with BV and 205 women with normal flora were included. Vaginal rinsing samples were obtained for measuring the levels of pro-inflammatory cytokines and bacterial sialidases. Real-time PCR was used to quantify the BV-associated bacteria and to estimate the total bacterial load using the 16S rRNA. Principal component analysis (PCA) using the measured parameters was performed to compare the BV samples with lower and higher loads of the species of interest. Results: Higher bacterial load (p<0.001), levels of interleukin 1-β (p<0.001) and sialidase activity (p<0.001) were associated with BV. Women with BV and higher relative loads of A vaginae, Megasphaera sp. and Leptotrichia sp. presented increased sialidase activity, but unchanged cytokine levels. PCA analysis did not indicate a different pattern of BV according to the loads of A vaginae, Megasphaera sp. and Leptotrichia sp. Conclusions: Greater participation of A vaginae, Megasphaera sp. and Leptotrichia sp. in vaginal bacterial community did not indicate a less severe form of BV; moreover, it was associated with increased sialidase activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breeder feed restriction may negatively affect broiler progeny immunity. Sources of trace minerals (TM) with higher bioavailability in breeder diets have been reported to enhance humoral and cellular immunity in broiler progeny. An experiment was conducted to examine the effects of breeder feeding programs and TM dietary sources on maternal antibody transfer and humoral immune response of progeny to a live vaccine against Newcastle disease virus (NDV). Cobb 500 breeders were fed according to 2 feed allocation programs, sigmoid late fast and sigmoid late slow, from 14 to 29 wk of age. From 56 to 62 wk of age, breeders were fed with either inorganic TM or an organic source (OTM) to replace 30% of Cu, Zn, and Mn. Progeny broilers were vaccinated intraocularly with La Sota NDV vaccine at 7 d of age. Blood samples were collected at hatching, 4, and 14 d postvaccination. Serum antibody levels against NDV were assessed by ELISA and cytokine expression by real time PCR. At hatching, late slow breeder progeny fed diets with 30% OTM had higher antibody titers as compared with progeny of breeders fed 100% inorganic TM. Similar results were observed 2 wk postvaccination. Breeder feeding programs and TM sources affected the expression level of IL-4 in NDV vaccinated broiler progeny. It was concluded that breeder feeding programs influenced humoral immune response to NDV vaccine in the broiler progeny, and 30% OTM may increase these responses. © 2013 Poultry Science Association, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human skin not only provides passive protection as a physical barrier against external injury, but also mediates active surveillance via epidermal cell surface receptors that recognize and respond to potential invaders. Primary keratinocytes and immortalized cell lines, the commonly used sources to investigate immune responses of cutaneous epithelium are often difficult to obtain and/or potentially exhibit changes in cellular genetic make-up. Here we investigated the possibility of using salivary epithelial cells (SEC) to evaluate the host response to cutaneous microbes. Elevated secretion of IFN-γ and IL-12 was observed in the SEC stimulated with Staphylococcus aureus, a transient pathogen of the skin, as mono species biofilm as compared to SEC stimulated with a commensal microbe, the Staphylococcus epidermidis. Co-culture of the SEC with both microbes as dual species biofilm elicited maximum cytokine response. Stimulation with S. aureus alone but not with S. epidermidis alone induced maximum toll-like receptor-2 (TLR-2) expression in the SEC. Exposure to dual species biofilm induced a sustained upregulation of TLR-2 in the SEC for up to an hour. The data support novel application of the SEC as efficient biospecimen that may be used to investigate personalized response to cutaneous microflora. © 2013 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helicobacter pylori (H. pylori) infection is the most common bacterial infection worldwide. Persistent infection of the gastric mucosa leads to inflammatory processes and may remain silent for decades or progress causing more severe diseases, such as gastric adenocarcinoma. The clinical consequences of H. pylori infection are determined by multiple factors, including host genetic predisposition, gene regulation, environmental factors and heterogeneity of H. pylori virulence factors. After decades of studies of this successful relationship between pathogen and human host, various mechanisms have been elucidated. In this review, we have made an introduction on H. pylori infection and its virulence factors, and focused mainly on modulation of host immune response triggered by bacteria, changes in the pattern of gene expression in H. pylori-infected gastric mucosa, with activation of gene transcription involved in defense mechanisms, inflammatory and immunological response, cell proliferation and apoptosis. We also highlighted the role of bacteria eradication on gene expression levels. In addition, we addressed the recent involvement of different microRNAs in precancerous lesions, gastric cancer, and inflammatory processes induced by bacteria. New discoveries in this field may allow a better understanding of the role of major factors involved in the pathogenic mechanisms of H. pylori. (C) 2014 Baishideng Publishing Group Co., Limited. All rights reserved.