164 resultados para Polycaprolactone


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blends of poly(lactic acid)(PLA) and thermoplastic acetylated starch(ATPS) were prepared by means of the melt mixing method. The results show that PLA and ATPS were partially miscible, which was confirmed with the measurement of T-g by dynamic mechanical analysis(DMA) and differrential scanning calorimetry(DSC). The mechanical and thermal properties of the blends were improved. With increasing the ATPs content, the elongation at break and impact strength were increased. The elongation at break increased from 5% of neat PLA to 25% of the blend PLA/ATPS40. It was found that the cold crystallization behavior of PLA changed evidently by addition of ATPS. The cold crystallization temperature(T-cc) of each of PLA/ATPS blends was found to shift to a lower temperature and the width of exothermic peak became narrow compared with that of neat PLA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Poly(butylene adipate-co-terephthalate) (PBAT) has attracted wide interest as a biodegradable polymer. However, its use is restricted in certain applications due to its low melting point.RESULTS: PBAT was treated using gamma-radiation. The radiation features were analyzed using Soxhlet extraction, and the ratio of chain scission and crosslinking and gelation dose were determined using the classical Charlesby-Pinner equation. The results showed that PBAT is a radiation-crosslinkable polymer. The degree of crosslinking increased with increasing radiation dose; the relation between sol fraction and dose followed the Charlesby-Pinner equation. Differential scanning calorimetry analyses showed that the melting temperature (T-m) and the heat of fusion (Delta H-m) of PBAT exhibited almost no change in the first scan. The second scan, however, showed a decrease in T-m and Delta H-m. The glass transition temperature of irradiated PBAT increased with increasing radiation dose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) (PCL), a saturated polyester, derived from ring-opening polymerization of epsilon-caprolactone, was chemically crosslinked with various amounts of benzoyl peroxide (BPO) by a two-step method by first evenly dispersing the BPO into the PCL matrix and then crosslinking at elevated temperature. The gel fraction increased with an increase in BPO content. The modified Charlesby-Pinner equation was used to calculate the ratio of chain scission and crosslinking. The results showed that both scission and crosslinking occurred, and that crosslinking predominated over scission. The number-average molecular weight between the crosslinks determined by the rubber elasticity theory using the hot set test showed a decrease with increasing BPO content. The melting temperature and crystallinity decreased with an increase in BPO content, and the crystallization temperature increased after crosslinking. Dynamic mechanical analysis results showed a decrease in the glass transition temperature as a result of chemical crosslinking of PCL. This was explained by the observed reduction in crystallinity and the increase in free volume due to restrictions in chain packing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) was crosslinked by gamma radiation in the presence of triallyl isocyanurate. The influence of gamma-radiation crosslinking on the thermal and mechanical properties of poly(epsilon-caprolactone)/triallyl isocyanurate was investigated. Differential scanning calorimetry analyses showed differences between the first and second scans. Dynamic mechanical analysis showed an increase in the glass-transition temperature as a result of the radiation crosslinking of poly(epsilon-caprolactone). Thermogravimetric analysis showed that gamma-radiation crosslinking slightly improved the thermal stability of poly(epsilon-caprolactone). The 7 radiation also strongly influenced the mechanical properties. At room temperature, crosslinking by radiation did not have a significant influence on the Young's modulus and yield stress of poly(E-caprolactone). However, the tensile strength at break and the elongation at break generally decreased with an increase in the crosslinking level. When the temperature was increased above the melting point, the tensile strength at break, elongation at break, and Young's modulus of poly(epsilon-caprolactone) were also reduced with an increase in the crosslinking level. The yield stress disappeared as a result of the disappearance of the crystallites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) (PCL) was chemically crosslinked with various amounts of benzoyl peroxide (BPO) The effect of BPO contents, crosslinking temperature and time on the crosslinking reaction was studied. The thermal, mechanical, and biodegradable properties of crosslinked PCL were also examined by DSC and DMA etc. The results showed that the melting temperature, crystallinity and glass transition temperature decreased with increase in BPO contents, while the crystallization temperature increased with increase in BPO content. The Young's modulus and elongation at break generally decreased with increase in BPO content. Moreover, the crosslinked PCL still had biodegradable ability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The triblock copolymers, poly(styrene-b-isoprene-b-epsilon-caprolactone)s (PS-b-PI-b-PCL) have been synthesized successfully by combination of anionic polymerization and ring-opening polymerization. Diblock copolymer capped with hydroxyl group, PS-b-PI-OH was synthesized by sequential- anionic polymerization of styrene and isoprene and following end-capping reaction of EO, and then it was used as macro initiator in the ring-opening polymerization of CL. The results of DSC and WAXD show big effect of amorphous PS-b-PI on the thermal behaviors of PCL block in the triblock copolymers and the lower degree of crystalline in the triblock copolymer with higher molecular weight of PS-b-PI was observed. The real-time observation on the polarized optical microscopy shows the spherulite growth rates of PCL27, PCL328 and PS-b-PI-b-PCL344 are 0.71, 0.46 and 0.07 mu m s(-1), respectively. The atomic force microscopy (AFM) images of the PS90-b-PI66-b-PCL-(28) show the columns morphology formed by it's self-assembling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The poly(L-lactide) (PLLA)/starch blends were prepared by the PLLA grafting starch (PLLA-g-St) copolymers as a compatibilizer, and their thermal, mechanical and morphological characterizations were performed to show the better performance of these blends compared to the virgin PLLA/starch blend without the compatibilizer, including PLLA crystallinity, interfacial adhesion between the PLLA matrix and starch dispersive phases, mechanical test, medium resistance, and contact angle. The 50/50 composite of PLLA/starch compatibilized by 10% PLLA-g-St gave a tensile strength of 24.7 MPa and an elongation at break of 8.7%, respectively, vs. 11.3 MPa and 1.5%, respectively, for the simple 50/50 blend of PLLA/starch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of this work were to investigate the conversion of a marine alga into hydroxyapatite (HA), and furthermore to design a composite bone tissue engineering scaffold comprising the synthesised HA within a porous bioresorbable polymer. The marine alga Phymatolithon calcareum, which exhibits a calcium carbonate honeycomb structure, with a natural architecture of interconnecting permeable pores (microporosity 4-11 mu m), provided the initial raw material for this study. The objective was to convert the alga into hydroxyapatite while maintaining its porous morphology using a sequential pyrolysis and chemical synthesis processes. Semi-quantitative XRD analysis of the post-hydrothermal material (pyrolised at 700-750 degrees C), indicated that the calcium phosphate (CaP) ceramic most likely consisted of a calcium carbonate macroporous lattice, with hydroxyapatite crystals on the surface of the macropores. Cell visibility (cytotoxicity) investigations of osteogenic cells were conducted on the CaP ceramic (i.e., the material post-hydrothermal analysis) which was found to be non-cytotoxic and displayed good biocompatibility when seeded with MG63 cells. Furthermore, a hot press scaffold fabrication technique was developed to produce a composite scaffold of CaP (derived from the marine alga) in a polycaprolactone (PCL) matrix. A salt leaching technique was further explored to introduce macroporosity to the structure (50-200 mu m). Analysis indicated that the scaffold contained both micro/macroporosity and mechanical strength, considered necessary for bone tissue engineering applications. (C) 2008 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work described in this paper demonstrates a combined novel approach to the preparation of drug loaded poly(e-caprolactone) layered silicate nanocomposites using hot melt extrusion, a continuous process in contrast to the normal batch type processing used to prepare polymeric drug delivery systems, and most significantly the use of high surface area, large aspect ratio inorganic nanoplatelets to retard drug release. The methodology and results described in this article are significant and could equally be applied to the controlled/retarded release of any bio-active molecule (pharmaceutical, nutraceutical, protein, DNA/iRNA, anti-microbial, anti-coagulant, etc.) from biopolymers and the production of medical devices from such composite materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites of poly(e-caprolactone) (PCL) and molybdenum sulfur iodine (MoSI) nanowires were prepared using twin-screw extrusion. Extensive microscopic examination of the composites revealed the nanowires were well dispersed in the PCL matrix, although bundles of Mo6S3I6 ropes were evident at higher loadings. Secondary electron imaging (SEI) showed the nanowires had formed an extensive network throughout the PCL matrix, resulting in increased electrical conductivity of PCL, by eight orders of magnitude, and an electrical percolation threshold of 6.5T10S3vol%. Thermal analysis (DSC), WAXD, and hot stage polarized optical microscopy (HSPOM) experiments revealed Mo6S3I6 addition altered PCL crystallization kinetics, nucleation density, and crystalline content. A greater number of smaller spherulites were formed via heterogeneous nucleation. The onset of thermal decomposition (TGA) of PCL decreased by 70-C, a consequence of the thermal degradation of Mo6S3I6 to MoO3, which in turn accelerates the formation of volatile gases during the first stage of PCL decomposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of roughening and functionalization processes involved in modifying the wettability of poly(e-caprolactone) (PCL) after treatment by an atmospheric pressure glow discharge plasma is discussed. The change in the ratio of Cdouble bond; length as m-dashO/C–O bonds is a significant factor influencing the wettability of PCL. As the contact angle decreases, the level of Cdouble bond; length as m-dashO bonds tends to rise. Surface roughness alterations are the driving force for lasting increases in wettability, while the surface functional species are shorter lived. We can approximate from ageing that the increase in wettability for PCL after plasma treatment is 55–60% due to roughening and 40–45% due to surface functionalization for the plasma device investigated.