971 resultados para IgG


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background: Helicobacter pylori (H. pylori) infection is ubiquitous in sub-Saharan Africa, but paradoxically gastric cancer is rare. Methods: Sera collected during a household-based survey in rural Tanzania in 1985 were tested for anti-H. pylori IgG and IgG subclass antibodies by enzyme immunoassay. Odds ratios (OR) and confidence intervals (CI) of association of seropositivity with demographic variables were computed by logistic regression models. Results: Of 788 participants, 513 were aged ≤17 years. H. pylori seropositivity increased from 76% at 0–4 years to 99% by ≥18 years of age. Seropositivity was associated with age (OR 11.5, 95% CI 4.2–31.4 for 10–17 vs. 0–4 years), higher birth-order (11.1; 3.6–34.1 for ≥3rd vs. 1st born), and having a seropositive next-older sibling (2.7; 0.9–8.3). Median values of IgG subclass were 7.2 for IgG1 and 2.0 for IgG2. The median IgG1/IgG2 ratio was 3.1 (IQR: 1.7–5.6), consistent with a Th2- dominant immune profile. Th2-dominant response was more frequent in children than adults (OR 2.4, 95% CI 1.3–4.4). Conclusion: H. pylori seropositivity was highly prevalent in Tanzania and the immunological response was Th2-dominant. Th2-dominant immune response, possibly caused by concurrent bacterial or parasitic infections, could explain, in part, the lower risk of H. pylori-associated gastric cancer in Africa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human Ureaplasma species are the most frequently isolated bacteria from the upper genital tract of pregnant women and can cause clinically asymptomatic, intra-uterine infections, which are difficult to treat with antimicrobials. Ureaplasma infection of the upper genital tract during pregnancy has been associated with numerous adverse outcomes including preterm birth, chorioamnionitis and neonatal respiratory diseases. The mechanisms by which ureaplasmas are able to chronically colonise the amniotic fluid and avoid eradication by (i) the host immune response and (ii) maternally-administered antimicrobials, remain virtually unexplored. To address this gap within the literature, this study investigated potential mechanisms by which ureaplasmas are able to cause chronic, intra-amniotic infections in an established ovine model. In this PhD program of research the effectiveness of standard, maternal erythromycin for the treatment of chronic, intra-amniotic ureaplasma infections was evaluated. At 55 days of gestation pregnant ewes received an intra-amniotic injection of either: a clinical Ureaplasma parvum serovar 3 isolate that was sensitive to macrolide antibiotics (n = 16); or 10B medium (n = 16). At 100 days of gestation, ewes were then randomised to receive either maternal erythromycin treatment (30 mg/kg/day for four days) or no treatment. Ureaplasmas were isolated from amniotic fluid, chorioamnion, umbilical cord and fetal lung specimens, which were collected at the time of preterm delivery of the fetus (125 days of gestation). Surprisingly, the numbers of ureaplasmas colonising the amniotic fluid and fetal tissues were not different between experimentally-infected animals that received erythromycin treatment or infected animals that did not receive treatment (p > 0.05), nor were there any differences in fetal inflammation and histological chorioamnionitis between these groups (p > 0.05). These data demonstrate the inability of maternal erythromycin to eradicate intra-uterine ureaplasma infections. Erythromycin was detected in the amniotic fluid of animals that received antimicrobial treatment (but not in those that did not receive treatment) by liquid chromatography-mass spectrometry; however, the concentrations were below therapeutic levels (<10 – 76 ng/mL). These findings indicate that the ineffectiveness of standard, maternal erythromycin treatment of intra-amniotic ureaplasma infections may be due to the poor placental transfer of this drug. Subsequently, the phenotypic and genotypic characteristics of ureaplasmas isolated from the amniotic fluid and chorioamnion of pregnant sheep after chronic, intra-amniotic infection and low-level exposure to erythromycin were investigated. At 55 days of gestation twelve pregnant ewes received an intra-amniotic injection of a clinical U. parvum serovar 3 isolate, which was sensitive to macrolide antibiotics. At 100 days of gestation, ewes received standard maternal erythromycin treatment (30 mg/kg/day for four days, n = 6) or saline (n = 6). Preterm fetuses were surgically delivered at 125 days of gestation and ureaplasmas were cultured from the amniotic fluid and the chorioamnion. The minimum inhibitory concentrations (MICs) of erythromycin, azithromycin and roxithromycin were determined for cultured ureaplasma isolates, and antimicrobial susceptibilities were different between ureaplasmas isolated from the amniotic fluid (MIC range = 0.08 – 1.0 mg/L) and chorioamnion (MIC range = 0.06 – 5.33 mg/L). However, the increased resistance to macrolide antibiotics observed in chorioamnion ureaplasma isolates occurred independently of exposure to erythromycin in vivo. Remarkably, domain V of the 23S ribosomal RNA gene (which is the target site of macrolide antimicrobials) of chorioamnion ureaplasmas demonstrated significant variability (125 polymorphisms out of 422 sequenced nucleotides, 29.6%) when compared to the amniotic fluid ureaplasma isolates and the inoculum strain. This sequence variability did not occur as a consequence of exposure to erythromycin, as the nucleotide substitutions were identical between chorioamnion ureaplasmas isolated from different animals, including those that did not receive erythromycin treatment. We propose that these mosaic-like 23S ribosomal RNA gene sequences may represent gene fragments transferred via horizontal gene transfer. The significant differences observed in (i) susceptibility to macrolide antimicrobials and (ii) 23S ribosomal RNA sequences of ureaplasmas isolated from the amniotic fluid and chorioamnion suggests that the anatomical site from which they were isolated may exert selective pressures that alter the socio-microbiological structure of the bacterial population, by selecting for genetic changes and altered antimicrobial susceptibility profiles. The final experiment for this PhD examined antigenic size variation of the multiple banded antigen (MBA, a surface-exposed lipoprotein and predicted ureaplasmal virulence factor) in chronic, intra-amniotic ureaplasma infections. Previously defined ‘virulent-derived’ and ‘avirulent-derived’ clonal U. parvum serovar 6 isolates (each expressing a single MBA protein) were injected into the amniotic fluid of pregnant ewes (n = 20) at 55 days of gestation, and amniotic fluid was collected by amniocentesis every two weeks until the time of near-term delivery of the fetus (at 140 days of gestation). Both the avirulent and virulent clonal ureaplasma strains generated MBA size variants (ranging in size from 32 – 170 kDa) within the amniotic fluid of pregnant ewes. The mean number of MBA size variants produced within the amniotic fluid was not different between the virulent (mean = 4.2 MBA variants) and avirulent (mean = 4.6 MBA variants) ureaplasma strains (p = 0.87). Intra-amniotic infection with the virulent strain was significantly associated with the presence of meconium-stained amniotic fluid (p = 0.01), which is an indicator of fetal distress in utero. However, the severity of histological chorioamnionitis was not different between the avirulent and virulent groups. We demonstrated that ureaplasmas were able to persist within the amniotic fluid of pregnant sheep for 85 days, despite the host mounting an innate and adaptive immune response. Pro-inflammatory cytokines (interleukin (IL)-1â, IL-6 and IL-8) were elevated within the chorioamnion tissue of pregnant sheep from both the avirulent and virulent treatment groups, and this was significantly associated with the production of anti-ureaplasma IgG antibodies within maternal sera (p < 0.05). These findings suggested that the inability of the host immune response to eradicate ureaplasmas from the amniotic cavity may be due to continual size variation of MBA surface-exposed epitopes. Taken together, these data confirm that ureaplasmas are able to cause long-term in utero infections in a sheep model, despite standard antimicrobial treatment and the development of a host immune response. The overall findings of this PhD project suggest that ureaplasmas are able to cause chronic, intra-amniotic infections due to (i) the limited placental transfer of erythromycin, which prevents the accumulation of therapeutic concentrations within the amniotic fluid; (ii) the ability of ureaplasmas to undergo rapid selection and genetic variation in vivo, resulting in ureaplasma isolates with variable MICs to macrolide antimicrobials colonising the amniotic fluid and chorioamnion; and (iii) antigenic size variation of the MBA, which may prevent eradication of ureaplasmas by the host immune response and account for differences in neonatal outcomes. The outcomes of this program of study have improved our understanding of the biology and pathogenesis of this highly adapted microorganism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Ureaplasma species in amniotic fluid at the time of second-trimester amniocentesis increases the risk of preterm birth, but most affected pregnancies continue to term (Gerber et al. J Infect Dis 2003). We aimed to model intra-amniotic (IA) ureaplasma infection in spiny mice, a species with a relatively long gestation (39 days) that allows investigation of the disposition and possible clearance of ureaplasmas in the feto-placental compartment. Method: Pregnant spiny mice received IA injections of U. parvum serovar 6 (10µL, 1x104 colony-forming-units in PBS) or 10B media (10µL; control) at 20 days (d) of gestation (term=39d). At 37d fetuses (n=3 ureaplasma, n=4 control) were surgically delivered and tissues were collected for; bacterial culture, ureaplasma mba and urease gene expression by PCR, tissue WBC counts and indirect fluorescent antibody (IFA) staining using anti-ureaplasma serovar 6 (rabbit) antiserum. Maternal and fetal plasma IgG was measured by Western blot. Results: Ureaplasmas were not detected by culture or PCR in fetal or maternal tissues but were visualized by IFA within placental and fetal lung tissues, in association with inflammatory changes and elevated WBC counts (p<0.0001). Anti-ureaplasma IgG was detected in maternal (2/2 tested) and fetal (1/2 tested) plasma but not in controls (0/3). Conclusions: IA injection of ureaplasmas in mid-gestation spiny mice caused persistent fetal lung and placental infection even though ureaplasmas were undetectable using standard culture or PCR techniques. This is consistent with resolution of IA infection, which may occur in human pregnancies that continue to term despite detection of ureaplasmas in mid-gestation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the influence of low-dose bovine colostrum protein concentrate (CPC) supplementation on selected immune variables in cyclists. Twenty-nine highly trained male road cyclists completed an initial 40-km time trial (TT(40)) and were then randomly assigned to either a supplement (n = 14, 10 g bovine CPC/day) or placebo group (n = 15, 10 g whey protein concentrate/day). After 5 wk of supplementation, the cyclists completed a second TT(40). They then completed 5 consecutive days of high-intensity training (HIT) that included a TT(40), followed by a final TT(40) in the following week. Venous blood and saliva samples were collected immediately before and after each TT(40), and upper respiratory illness symptoms were recorded over the experimental period. Compared with the placebo group, bovine CPC supplementation significantly increased preexercise serum soluble TNF receptor 1 during the HIT period (bovine CPC = 882 +/- 233 pg/ml, placebo = 468 +/- 139 pg/ml; P = 0.039). Supplementation also suppressed the postexercise decrease in cytotoxic/suppressor T cells during the HIT period (bovine CPC = -1.0 +/- 2.7%, placebo = -9.2 +/- 2.8%; P = 0.017) and during the following week (bovine CPC = 1.4 +/- 2.9%, placebo = -8.2 +/- 2.8%; P = 0.004). Bovine CPC supplementation prevented a postexercise decrease in serum IgG(2) concentration at the end of the HIT period (bovine CPC = 4.8 +/- 6.8%, P = 0.88; placebo = -9.7 +/- 6.9%, P = 0.013). There was a trend toward reduced incidence of upper respiratory illness symptoms in the bovine CPC group (P = 0.055). In summary, low-dose bovine CPC supplementation modulates immune parameters during normal training and after an acute period of intense exercise, which may have contributed to the trend toward reduced upper respiratory illness in the bovine CPC group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IL-17 is believed to be important for protection against extracellular pathogens, where clearance is dependent on neutrophil recruitment and local activation of epithelial cell defences. However, the role of IL-17 in protection against intracellular pathogens such as Chlamydia is less clear. We have compared (i) the course of natural genital tract C. muridarum infection, (ii) the development of oviduct pathology and (iii) the development of vaccine-induced immunity against infection in wild type (WT) BALB/c and IL-17 knockout mice (IL-17-/-) to determine if IL-17-mediated immunity is implicated in the development of infection-induced pathology and/or protection. Both the magnitude and duration of genital infection was significantly reduced in IL-17-/- mice compared to BALB/c. Similarly, hydrosalpinx was also greatly reduced in IL-17-/- mice and this correlated with reduced neutrophil and macrophage infiltration of oviduct tissues. Matrix metalloproteinase (MMP) 9 and MMP2 were increased in WT oviducts compared to IL-17-/- animals at day 7 post-infection. In contrast, oviducts from IL-17-/- mice contained higher MMP9 and MMP2 at day 21. Infection also elicited higher levels of Chlamydia-neutralizing antibody in serum of IL-17-/- mice than WT mice. Following intranasal immunization with C. muridarum Major Outer Membrane Protein (MOMP) and cholera toxin plus CpG adjuvants, significantly higher levels of chlamydial MOMP-specific IgG and IgA were found in serum and vaginal washes of IL-17-/- mice. T cell proliferation and IFNγ production by splenocytes was greater in WT animals following in vitro re-stimulation, however vaccination was only effective at reducing infection in WT, not IL-17-/- mice. Intranasal or transcutaneous immunization protected WT but not IL-17-/- mice against hydrosalpinx development. Our data show that in the absence of IL-17, the severity of C. muridarum genital infection and associated oviduct pathology are significantly attenuated, however neither infection or pathology can be reduced further by vaccination protocols that effectively protect WT mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydia trachomatis infections of the male and female reproductive tracts are the world's leading sexually transmitted bacterial disease, and can lead to damaging pathology, scarring and infertility. The resolution of chlamydial infection requires the development of adaptive immune responses to infection, and includes cell-mediated and humoral immunity. Whilst cluster of differentiation (CD)4+ T cells are known to be essential in clearance of infection [1], they are also associated with immune cell infiltration, autoimmunity and infertility in the testes [2-3]. Conversely, antibodies are less associated with inflammation, are readily transported into the reproductive tracts, and can offer lumenal neutralization of chlamydiae prior to infection. Antibodies, or immunoglobulins (Ig), play a supportive role in the resolution of chlamydial infections, and this thesis sought to define the function of IgA and IgG, against a variety of chlamydial antigens expressed during the intracellular and extracellular stages of the chlamydial developmental cycle. Transport of IgA and IgG into the mucosal lumen is facilitated by receptor-mediated transcytosis yet the expression profile (under normal conditions and during urogenital chlamydial infection) of the polymeric immunoglobulin receptor (pIgR) and the neonatal Fc receptor (FcRn) remains unknown. The expression profile of pIgR and FcRn in the murine male reproductive tract was found to be polarized to the lower and upper reproductive tract tissues respectively. This demonstrates that the two receptors have a tissue tropism, which must be considered when targeting pathogens that colonize different sites. In contrast, the expression of pIgR and FcRn in the female mouse was found to be distributed in both the upper and lower reproductive tracts. When urogenitally infected with Chlamydia muridarum, both male and female reproductive tracts up-regulated expression of pIgR and down-regulated expression of FcRn. Unsurprisingly, the up-regulation of pIgR increased the concentration of IgA in the lumen. However, down-regulation of FcRn, prevented IgG uptake and led to an increase or pooling of IgG in lumenal secretions. As previous studies have identified the importance of pIgR-mediated delivery of IgA, as well as the potential of IgA to bind and neutralize intracellular pathogens, IgA against a variety of chlamydial antigens was investigated. The protection afforded by IgA against the extracellular antigen major outer membrane protein (MOMP), was found to be dependent on pIgR expression in vitro and in vivo. It was also found that in the absence of pIgR, no protection was afforded to mice previously immunized with MOMP. The protection afforded from polyclonal IgA against the intracellular chlamydial antigens; inclusion membrane protein A (IncA), inclusion membrane proteins (IncMem) and secreted chlamydial protease-like activity factor (CPAF) were produced and investigated in vitro. Antigen-specific intracellular IgA was found to bind to the respective antigen within the infected cell, but did not significantly reduce inclusion formation (p > 0.05). This suggests that whilst IgA specific for the selected antigens was transported by pIgR to the chlamydial inclusion, it was unable to prevent growth. Similarly, immunization of male mice with intracellular chlamydial antigens (IncA or IncMem), followed by depletion CD4+ T cells, and subsequent urogenital C. muridarum challenge, provided minimal pIgR-mediated protection. Wild type male mice immunized with IncA showed a 57 % reduction (p < 0.05), and mice deficient in pIgR showed a 35 % reduction (p < 0.05) in reproductive tract chlamydial burden compared to control antigen, and in the absence of CD4+ T cells. This suggests that pIgR and secretory IgA (SIgA) were playing a protective role (21 % pIgR-mediated) in unison with another antigen-specific immune mechanism (36 %). Interestingly, IgA generated during a primary respiratory C. muridarum infection did not provide a significant amount of protection to secondary urogenital C. muridarum challenge. Together, these data suggest that IgA specific for an extracellular antigen (MOMP) can play a strong protective role in chlamydial infections, and that IgA targeting intracellular antigens is also effective but dependent on pIgR expression in tissues. However, whilst not investigated here, IgA targeting and blocking other intracellular chlamydial antigens, that are more essential for replication or type III secretion, may be more efficacious in subunit vaccines. Recently, studies have demonstrated that IgG can neutralize influenza virus by trafficking IgG-bound virus to lysosomes [4]. We sought to determine if this process could also traffic chlamydial antigens for degradation by lysosomes, despite Chlamydia spp. actively inhibiting fusion with the host endocytic pathway. As observed in pIgR-mediated delivery of anti-IncA IgA, FcRn similarly transported IgG specific for IncA which bound the inclusion membrane. Interestingly, FcRn-mediated delivery of anti-IncA IgG significantly decreased inclusion formation by 36 % (p < 0.01), and induced aberrant inclusion morphology. This suggests that unlike IgA, IgG can facilitate additional host cellular responses which affect the intracellular niche of chlamydial growth. Fluorescence microscopy revealed that IgG also bound the inclusion, but unlike influenza studies, did not induce the recruitment of lysosomes. Notably, anti-IncA IgG recruited sequestosomes to the inclusion membrane, markers of the ubiquitin/proteasome pathway and major histocompatibility complex (MHC) class I loading. To determine if the protection against C. muridarum infection afforded by IncA IgG in vitro translated in vivo, wild type mice and mice deficient in functional FcRn and MHC-I, were immunized, depleted of CD4+, and urogenitally infected with C. muridarum. Unlike in pIgR-deficient mice, the protection afforded from IncA immunization was completely abrogated in mice lacking functional FcRn and MHC-I/CD8+. Thus, both anti-IncA IgA and IgG can bind the inclusion in a pIgR and FcRn-mediated manner, respectively. However, only IgG mediates a higher reduction in chlamydial infection in vitro and in vivo suggesting more than steric blocking of IncA had occurred. Unlike anti-MOMP IgA, which reduced chlamydial infection of epithelial cells and male mouse tissues, IgG was found to enhance infectivity in vitro, and in vivo. Opsonization of EBs with MOMP-IgG enhanced inclusion formation of epithelial cells in a MOMP-IgG dose-dependent and FcRn-dependent manner. When MOMP-IgG opsonized EBs were inoculated into the vagina of female mice, a small but non-significant (p > 0.05) enhancement of cervicovaginal C. muridarum shedding was observed three days post infection in mice with functional FcRn. Interestingly, infection with opsonized EBs reduced the intensity of the peak of infection (day six) but protracted the duration of infection by 60 % in wild type mice only. Infection with EBs opsonized in IgG also significantly increased (p < 0.05) hydrosalpinx formation in the oviducts and induced lymphocyte infiltration uterine horns. As MOMP is an immunodominant antigen, and is widely used in vaccines, the ability of IgG specific to extracellular chlamydial antigens to enhance infection and induce pathology needs to be considered. Together, these data suggest that immunoglobulins play a dichotomous role in chlamydial infections, and are dependent on antigen specificity, FcRn and pIgR expression. FcRn was found to be highly expressed in upper male reproductive tract, whilst pIgR was dominantly expressed in the lower reproductive tract. Conversely, female mice expressed FcRn and pIgR in both the lower and upper reproductive tracts. In response to a normal chlamydial infection, pIgR is up-regulated increasing secretory IgA release, but FcRn is down-regulated preventing IgG uptake. Similarly to other studies [5-6], we demonstrate that IgA and IgG generated during primary chlamydial infections plays a minor role in recall immunity, and that antigen-specific subunit vaccines can offer more protection. We also show that both IgA and IgG can be used to target intracellular chlamydial antigens, but that IgG is more effective. Finally, IgA against the extracellular antigen MOMP can afford protection, whist IgG plays a deleterious role by increasing infectivity and inducing damaging immunopathology. Further investigations with additional antigens or combination subunit vaccines will enhance our understanding the protection afforded by antibodies against intracellular and extracellular pathogenic antigens, and help improve the development of an efficacious chlamydial vaccine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Dengue poses a problem for safe transfusion of blood components with confirmed reports of transfusion-transmission in Hong Kong and Singapore. The largest outbreak in 50 years occurred in North Queensland during 2008/2009 with more than 1,000 confirmed cases in Cairns and Townsville. During this outbreak, supplementary questioning for all donors was implemented, and fresh components were not manufactured from at risk donors. We aim to determine the seroprevalence of dengue exposure in this population during this epidemic. Methods: Samples were collected from blood donors during the 2008/2009 epidemic and 3 months after the last confirmed case. These samples were tested for anti-Dengue IgM, IgG and NS1 antigen with commercially available ELISA based assay kits from PanBio. Results: Initial analyses revealed 2.7% of samples from deferred donors were IgM repeat reactive. Of these, 16% were also positive for anti-dengue IgG, while none of these were positive for the NS1 viral antigen. However, two NS1 positives were found in samples collected from deferred donors. Conclusions: This initial analysis represents recent and cumulative past exposure in a presumed asymptomatic population, and will provide documentation of the rate of asymptomatic dengue infection during the epidemic. This data can also be used to assess the risk of dengue becoming endemic in North Queensland given that the mosquito vector is established in this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES To determine whether the seroprevalence of antibodies to varicella zoster virus (VZV) in adults is similar to that reported in tropical populations elsewhere. METHODS We measured the seroprevalence of VZV IgG antibodies, using an enzyme immunoassay (EIA) in women attending an antenatal clinic in an urban centre in tropical Australia. RESULTS The overall seroprevalence of VZV antibodies in 298 women was 92% (95% CI 88-95), with no difference between women who spent their childhoods in the tropics and colleagues. None of the overseas-born women was seronegative. CONCLUSION The seroprevalence of VZV antibodies in this tropical population in Australia is as high as that reported from temperate regions, suggesting that social and cultural factors and population mobility are more important determinants of age distribution of VZV immunity than tropical climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oral immunization is attractive as a delivery route because it is needle-free and useful for rapid mass vaccination programs to target pandemics or bioterrorism. This potential has not been realized for human vaccination, due to the requirement of large antigen doses and toxic (to humans) adjuvants to overcome the induction of oral tolerance and potential degradation of antigens in the stomach. To date, only oral vaccines based on live attenuated organisms have been approved for human use. In this study we describe the use of a lipid-based delivery system/adjuvant, Lipid C, for oral immunization to protect mice against genital tract chlamydial infection. Lipid C is formulated from food-grade purified and fractionated triglycerides. Bacterial shedding following vaginal challenge with Chlamydia muridarum was reduced by 50% in female mice orally immunized with the chlamydial major outer membrane protein (MOMP) formulated in Lipid C, protection equivalent to that seen in animals immunized with MOMP admixed with both cholera toxin (CT) and CpG oligodeoxynucleotides (CpG-ODN). Protection was further enhanced when MOMP, CT and CpG were all combined in the Lipid C matrix. Protection correlated with production of gamma interferon (IFN) by splenic T cells, a serum MOMP-specific IgG response and low but detectable levels of MOMP-specific IgA in vaginal lavage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydia trachomatis is a pathogen of the genital tract and ocular epithelium. Infection is established by the binding of the metabolically inert elementary body (EB) to epithelial cells. These are taken up by endocytosis into a membrane-bound vesicle termed an inclusion. The inclusion avoids fusion with host lysosomes, and the EBs differentiate into the metabolically active reticulate body (RB), which replicates by binary fission within the protected environment of the inclusion. During the extracellular EB stage of the C. trachomatis life cycle, antibody present in genital tract or ocular secretions can inhibit infection both in vivo and in tissue culture. The RB, residing within the intracellular inclusion, is not accessible to antibody, and resolution of infection at this stage requires a cell-mediated immune response mediated by gamma interferon-secreting Th1 cells. Thus, an ideal vaccine to protect against C. trachomatis genital tract infection should induce both antibody (immunoglobulin A [IgA] and IgG) responses in mucosal secretions to prevent infection by chlamydial EB and a strong Th1 response to limit ascending infection to the uterus and fallopian tubes. In the present study we show that transcutaneous immunization with major outer membrane protein (MOMP) in combination with both cholera toxin and CpG oligodeoxynucleotides elicits MOMP-specific IgG and IgA in vaginal and uterine lavage fluid, MOMP-specific IgG in serum, and gamma interferon-secreting T cells in reproductive tract-draining caudal and lumbar lymph nodes. This immunization protocol resulted in enhanced clearance of C. muridarum (C. trachomatis, mouse pneumonitis strain) following intravaginal challenge of BALB/c mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the hallmarks of progressive renal disease is the development of tubulointerstitial fibrosis. This is frequently preceded by macrophage infiltration, raising the possibility that macrophages relay fibrogenic signals to resident tubulointerstitial cells. The aim of this study was to investigate the potentially fibrogenic role of interleukin-1beta (IL-1beta), a macrophage-derived inflammatory cytokine, on cortical fibroblasts (CFs). Primary cultures of human renal CFs were established and incubated for 24 hours in the presence or absence of IL-1beta. We found that IL-1beta significantly stimulated DNA synthesis (356.7% +/- 39% of control, P <.003), fibronectin secretion (261.8 +/- 11% of control, P <.005), collagen type 1 production, (release of procollagen type 1 C-terminal-peptide, 152.4% +/- 26% of control, P <.005), transforming growth factor-beta (TGF-beta) secretion (211% +/- 37% of control, P <.01), and nitric oxide (NO) production (342.8% +/- 69% of control, P <.002). TGF-beta (1 ng/mL) and the phorbol ester phorbol 12-myristate 13-acetate (PMA, 25 nmol/L) produced fibrogenic effects similar to those of IL-1beta. Neither a NO synthase inhibitor (N(G)-methyl-l-arginine, 1 mmol/L) nor a protein kinase C (PKC) inhibitor (bis-indolylmaleimide 1, 1 micromol/L) altered the enhanced level of fibronectin secretion or DNA synthesis seen in response to IL-1beta treatment. However, addition of a TGF-beta-neutralizing antibody significantly reduced IL-1beta-induced fibronectin secretion (IL-1beta + IgG, 262% +/- 72% vs IL-1beta + alphaTGF-beta 156% +/- 14%, P <.02), collagen type 1 production (IL-1beta + IgG, 176% +/- 28% vs IL-1beta + alphaTGF-beta, 120% +/- 14%, P <.005) and abrogated IL-1beta-induced DNA synthesis (245% +/- 49% vs 105% +/- 21%, P <.005). IL-1beta significantly stimulated CF DNA synthesis and production of fibronectin, collagen type 1, TGFbeta, and NO. The fibrogenic and proliferative action of IL-1beta on CF appears not to involve activation of PKC or production of NO but is at least partly TGFbeta-dependent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schistosomes express a family of integral membrane proteins, called tetraspanins (TSPs), in the outer surface membranes of the tegument. Two of these tetraspanins, Sm-TSP-1 and Sm-TSP-2, confer protection as vaccines in mice, and individuals who are naturally resistant to S. mansoni infection mount a strong IgG response to Sm-TSP-2. To determine their functions in the tegument of S. mansoni we used RNA interference to silence expression of Sm-tsp-1 and Sm-tsp-2 mRNAs. Soaking of parasites in Sm-tsp dsRNAs resulted in 61% (p = 0.009) and 74% (p = 0.009) reductions in Sm-tsp-1 and Sm-tsp-2 transcription levels, respectively, in adult worms, and 67%–75% (p = 0.011) and 69%–89% (p = 0.004) reductions in Sm-tsp-1 and Sm-tsp-2 transcription levels, respectively, in schistosomula compared to worms treated with irrelevant control (luciferase) dsRNA. Ultrastructural morphology of adult worms treated in vitro with Sm-tsp-2 dsRNA displayed a distinctly vacuolated and thinner tegument compared with controls. Schistosomula exposed in vitro to Sm-tsp-2 dsRNA had a significantly thinner and more vacuolated tegument, and morphology consistent with a failure of tegumentary invaginations to close. Injection of mice with schistosomula that had been electroporated with Sm-tsp-1 and Sm-tsp-2 dsRNAs resulted in 61% (p = 0.005) and 83% (p = 0.002) reductions in the numbers of parasites recovered from the mesenteries four weeks later when compared to dsRNA-treated controls. These results imply that tetraspanins play important structural roles impacting tegument development, maturation or stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The level of plasma-derived naturally circulating anti-glycan antibodies (AGA) to P1 trisaccharide has previously been shown to significantly discriminate between ovarian cancer patients and healthy women. Here we aim to identify the Ig class that causes this discrimination, to identify on cancer cells the corresponding P1 antigen recognised by circulating anti-P1 antibodies and to shed light into the possible function of this glycosphingolipid. Method An independent Australian cohort was assessed for the presence of anti-P1 IgG and IgM class antibodies using suspension array. Monoclonal and human derived anti-glycan antibodies were verified using three independent glycan-based immunoassays and flow cytometry-based inhibition assay. The P1 antigen was detected by LC-MS/MS and flow cytometry. FACS-sorted cell lines were studied on the cellular migration by colorimetric assay and real-time measurement using xCELLigence system. Results Here we show in a second independent cohort (n=155) that the discrimination of cancer patients is mediated by the IgM class of anti-P1 antibodies (P=0.0002). The presence of corresponding antigen P1 and structurally related epitopes in fresh tissue specimens and cultured cancer cells is demonstrated. We further link the antibody and antigen (P1) by showing that human naturally circulating and affinity-purified anti-P1 IgM isolated from patients ascites can bind to naturally expressed P1 on the cell surface of ovarian cancer cells. Cell-sorted IGROV1 was used to obtain two study subpopulations (P1-high, 66.1%; and P1-low, 33.3%) and observed that cells expressing high P1-levels migrate significantly faster than those with low P1-levels. Conclusions This is the first report showing that P1 antigen, known to be expressed on erythrocytes only, is also present on ovarian cancer cells. This suggests that P1 is a novel tumour-associated carbohydrate antigen recognised by the immune system in patients and may have a role in cell migration. The clinical value of our data may be both diagnostic and prognostic; patients with low anti-P1 IgM antibodies present with a more aggressive phenotype and earlier relapse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Dysregulation of salivary immunoglobulins has been implicated in illnesses ranging from periodontal disease to HIV aids and malignant cancers. Despite these advances there is a lack of agreement among studies with regard to the salivary immunoglobulin levels in healthy controls. Methodology: Resting and mechanically stimulated saliva samples and matching serum samples were collected from healthy individuals (n = 33; 40-55 years of age; gender: 23 female, 10 male). A matrix-matched AlphaLISA((R)) assay was developed to determine the concentrations of IgG1 and IgG4 in serum and saliva samples. Conclusion: Clear relationships were observed in the flow rate and concentration of each immunoglobulin in the two types of saliva. This study affirms the need to establish and standardize collection methods before salivary IgGs are used for diagnostic purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 A˚, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced "leopard skin"-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions, can capture processes that are otherwise obscured to the amino acid-based formalism.