148 resultados para Histomorphometry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To evaluate the histomorphometry and expression of Ki-67 and c-kit in ovarian follicles of pinealectomized or melatonin-treated pinealectomized rats. Study design: Forty adult rats were randomly divided into four groups of 10 animals: Group I – control; Group II – sham-pinealectomized; Group III – pinealectomized (Px), and Group IV – Px treated with melatonin (10 mg/night, per animal). After two months’ treatment, on the night of proestrous, the animals were placed in metabolic cages for night urine collection and subsequent measurement of 6-sulfatoxymelatonin (6-SMT). The rats were anesthetized, blood samples were taken for estrogen and progesterone determinations, and they were then euthanized. The ovaries were dissected out for further histological and immunohistochemical analyses. Data were first submitted to analysis of variance (ANOVA) complemented with the Tukey–Kramer test for multiple comparisons (P < 0.05). Results: The urinary levels of 6-SMT and serum progesterone were lower in the Px group (GIII). Exogenous melatonin treatment restored both blood melatonin and 6-SMT urinary levels. The histomorphometric data in Group III revealed a significant increase of degenerating antral and nonantral follicles with regard to the other groups. In addition no corpora lutea were observed in this group. No significant differences were noticed regarding the number of corpora lutea among the other groups (I, II and IV), but the number of cells and the thickness of the theca interna of Px animals (Group III) were higher than in the other groups. Conversely, the density of progesterone receptors (fmol/g) in the ovaries of Group III was significantly lower than in the other groups. Conclusion: Our data indicate that melatonin exerts a role on the maintenance of a proper follicular function, and is thus important for ovulation and progesterone production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: A controlled, gradual distraction of the periosteum is expected to result in the formation of new bone. Purpose: This study was designed to estimate the possibility of new bone formation by periosteal distraction in a rat calvarium model. Material and Methods: Sixteen animals were subjected to a 7-day latency period and distraction rate at 0.4 mm/24 hours for 10 days. Two experimental groups with seven rats each were killed at 10 and 20 days of consolidation period and analyzed by means of microcomputed tomography, histologically and histomorphometry. Results: In the central regions underneath the disk device, signs of both bone apposition and bone resorption were observed. Peripheral to the disc, new bone was consistently observed. This new bone was up to two and three times thicker than the original bone after a 10- and 20-day consolidation period, respectively. Signs of ongoing woven bone formation indicated that the stimulus for new bone formation was still present. There were no statistically significant differences regarding bone density, bone volume, and total bone height between the two groups. Conclusion: The periosteal distraction model in the rat calvarium can stimulate the formation of considerable amounts of new bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy-dependent intestinal calcium absorption is important for the maintenance of calcium and bone homeostasis, especially when dietary calcium supply is restricted. The active form of vitamin D, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], is a crucial regulator of this process and increases the expression of the transient receptor potential vanilloid 6 (Trpv6) calcium channel that mediates calcium transfer across the intestinal apical membrane. Genetic inactivation of Trpv6 in mice (Trpv6(-/-)) showed, however, that TRPV6 is redundant for intestinal calcium absorption when dietary calcium content is normal/high and passive diffusion likely contributes to maintain normal serum calcium levels. On the other hand, Trpv6 inactivation impaired the increase in intestinal calcium transport following calcium restriction, however without resulting in hypocalcemia. A possible explanation is that normocalcemia is maintained at the expense of bone homeostasis, a hypothesis investigated in this study. In this study, we thoroughly analyzed the bone phenotype of Trpv6(-/-) mice receiving a normal (approximately 1%) or low (approximately 0.02%) calcium diet from weaning onwards using micro-computed tomography, histomorphometry and serum parameters. When dietary supply of calcium is normal, Trpv6 inactivation did not affect growth plate morphology, bone mass and remodeling parameters in young adult or aging mice. Restricting dietary calcium had no effect on serum calcium levels and resulted in a comparable reduction in bone mass accrual in Trpv6(+/+) and Trpv6(-/-) mice (-35% and 45% respectively). This decrease in bone mass was associated with a similar increase in bone resorption, whereas serum osteocalcin levels and the amount of unmineralized bone matrix were only significantly increased in Trpv6(-/-) mice. Taken together, our findings indicate that TRPV6 contributes to intestinal calcium transport when dietary calcium supply is limited and in this condition indirectly regulates bone formation and/or mineralization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The relative contributions of different, potential factors to new bone formation in periosteal distraction osteogenesis are unknown. Purpose: The aim of the present study was to assess the influence of original bone and periosteum on bone formation during periosteal distraction osteogenesis in a rat calvarial model by means of histology and histomorphometry. Methods: A total of 48 rats were used for the experiment. The contribution of the periosteum was assessed by either intact or incised periosteum or an occlusive versus a perforated distraction plate. The cortical bone was either left intact or perforated. Animals were divided in eight experimental groups considering the three possible treatment modalities. All animals were subjected to a 7-day latency period, a 10-day distraction period and a 7-day consolidation period. The newly formed bone was analyzed histologically and histomorphometrically. Results: New, mainly woven bone was found in all groups. Differences in the maximum height of new bone were observed and depended on location. Under the distraction plate, statistically significant differences in maximum bone height were found between the group with perforations in both cortical bone and distraction plate and the group without such perforations. Conclusions: If the marrow cavities were not opened, the contribution to new bone formation was dominant from the periosteum. If the bone perforations opened the marrow cavities, a significant contribution to new bone formation originated from the native bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exacerbation of cerebrospinal fluid (CSF) inflammation in response to bacteriolysis by beta-lactam antibiotics contributes to brain damage and neurological sequelae in bacterial meningitis. Daptomycin, a nonlytic antibiotic acting on Gram-positive bacteria, lessens inflammation and brain injury compared to ceftriaxone. With a view to a clinical application for pediatric bacterial meningitis, we investigated the effect of combining daptomycin or rifampin with ceftriaxone in an infant rat pneumococcal meningitis model. Eleven-day-old Wistar rats with pneumococcal meningitis were randomized to treatment starting at 18 h after infection with (i) ceftriaxone (100 mg/kg of body weight, subcutaneously [s.c.], twice a day [b.i.d.]), (ii) daptomycin (10 mg/kg, s.c., daily) followed 15 min later by ceftriaxone, or (iii) rifampin (20 mg/kg, intraperitoneally [i.p.], b.i.d.) followed 15 min later by ceftriaxone. CSF was sampled at 6 and 22 h after the initiation of therapy and was assessed for concentrations of defined chemokines and cytokines. Brain damage was quantified by histomorphometry at 40 h after infection and hearing loss was assessed at 3 weeks after infection. Daptomycin plus ceftriaxone versus ceftriaxone significantly (P < 0.04) lowered CSF concentrations of monocyte chemoattractant protein 1 (MCP-1), MIP-1α, and interleukin 6 (IL-6) at 6 h and MIP-1α, IL-6, and IL-10 at 22 h after initiation of therapy, led to significantly (P < 0.01) less apoptosis, and significantly (P < 0.01) improved hearing capacity. While rifampin plus ceftriaxone versus ceftriaxone also led to lower CSF inflammation (P < 0.02 for IL-6 at 6 h), it had no significant effect on apoptosis and hearing capacity. Adjuvant daptomycin could therefore offer added benefits for the treatment of pediatric pneumococcal meningitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we present the development of a visual evaluation system for routine assessment of in vitro-engineered cartilaginous tissue. Neocartilage was produced by culturing human articular chondrocytes in pellet culture systems or in a scaffold-free bioreactor system. All engineered tissues were embedded in paraffin and were sectioned and stained with Safranin O-fast green. The evaluation of each sample was broken into 3 categories (uniformity and intensity of Safranin O stain, distance between cells/amount of matrix produced, and cell morphology), and each category had 4 components with a score ranging from 0 to 3. Three observers evaluated each sample, and the new system was independently tested against an objective computer-based histomorphometry system. Pellets were also assessed biochemically for glycosaminoglycan (GAG) content. Pellet histology scores correlated significantly with GAG contents and were in agreement with the computer-based histomorphometry system. This system allows a valid and rapid assessment of in vitro-generated cartilaginous tissue that has a relevant association with objective parameters indicative of cartilage quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Cyclopentenone prostaglandins have been shown to promote osteoblast differentiation in vitro. The aim of this study was to examine in a rat model the effects of local delivery of Delta(12)-prostaglandin J(2) (Delta(12)-PGJ(2)) on new bone formation and growth factor expression in (i) cortical defects and (ii) around titanium implants. MATERIAL AND METHODS: Standardized transcortical defects were prepared bilaterally in the femur of 28 male Wistar rats. Ten microliters of Delta(12)-PGJ(2) at 4 concentrations (10(-9), 10(-7), 10(-5) and 10(-3) mol/l) in a collagen vehicle were delivered inside a half-cylindrical titanium chamber fixed over the defect. Contralateral defects served as vehicle controls. Ten days after surgery, the amount of new bone formation in the cortical defect area was determined by histomorphometry and expression of platelet-derived growth factor (PDGF)-A and -B, insulin-like growth factor (IGF)-I/II, bone morphogenetic protein (BMP)-2 and -6 was examined by immunohistochemistry. In an additional six rats, 24 titanium implants were inserted into the femur. Five microliters of carboxymethylcellulose alone (control) or with Delta(12)-PGJ(2) (10(-5) and 10(-3) mol/l) were delivered into surgically prepared beds prior to implant installation. RESULTS: Delta(12)-PGJ(2) (10(-5) and 10(-3) mol/l) significantly enhanced new bone formation (33%, P<0.05) compared with control cortical defects. Delivery of Delta(12)-PGJ(2) at 10(-3) mol/l significantly increased PDGF-A and -B and BMP-2 and -6 protein expression (P<0.05) compared with control defects. No significant difference was found in IGF-I/II expression compared with controls. Administration of Delta(12)-PGJ(2) also significantly increased endosteal new bone formation around implants compared with controls. CONCLUSION: Local delivery of Delta(12)-PGJ(2) promoted new bone formation in the cortical defect area and around titanium implants. Enhanced expression of BMP-2 and -6 as well as PDGF-A and -B may be involved in Delta(12)-PGJ(2)-induced new bone formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Bone formation during guided tissue regeneration is a tightly regulated process involving cells, extracellular matrix and growth factors. The aims of this study were (i) to examine the expression of cyclooxygenase-2 (COX-2) during bone regeneration and (ii) the effects of selective COX-2 inhibition on osseous regeneration and growth factor expression in the rodent femur model. MATERIAL AND METHODS: A standardized transcortical defect of 5 x 1.5 mm was prepared in the femur of 12 male rats and a closed half-cylindrical titanium chamber was placed over the defect. The expression of COX-2 and of platelet-derived growth factor-B (PDGF-B), bone morphogenetic protein-6 (BMP-6) and insulin-like growth factor-I/II (IGF-I/II) was analyzed at Days 3, 7, 21 and 28 semiquantitatively by reverse transcriptase-polymerase chain reaction and immunohistochemistry. The effects of COX-2 inhibition by intraperitoneal injection of NS-398 (3 mg/kg/day) were analyzed in five additional animals sacrificed at Day 14. RESULTS: Histomorphometry revealed that new bone formation occurred in the cortical defect area as well as in the supracortical region, i.e. region within the chamber by Day 7 and increased through Day 28. Immunohistochemical evidence of COX-2 and PDGF-B levels were observed early (i.e. Day 3) and decreased rapidly by Day 7. BMP-6 expression was maximal at Day 3 and slowly declined by Day 28. In contrast, IGF-I/II expression gradually increased during the 28-day period. Systemic administration NS-398 caused a statistically significant reduction (P<0.05) in new bone formation (25-30%) and was associated with a statistically significant reduction in BMP-6 protein and mRNA expression (50% and 65% at P<0.05 and P<0.01, respectively). PDGF-B mRNA or protein expression was not affected by NS-398 treatment. CONCLUSION: COX-2 inhibition resulted in reduced BMP-6 expression and impaired osseous regeneration suggesting an important role for COX-2-induced signaling in BMP synthesis and new bone formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nearly half of the US population faces the risk of developing knee osteoarthritis (OA). Both in vitro and in vivo studies can aid in a better understanding of the etiology, progression, and advancement of this debilitating disorder. The knee menisci are fibrocartilagenous structures that aid in the distribution of load, attenuation of shock, alignment and lubrication of the knee. Little is known about the biochemical and morphological changes associated with knee menisci following altered loading and traumatic impaction, and investigations are needed to further elucidate how degradation of this soft tissue advances over time. The biochemical response of porcine meniscal explants was investigated following a single bout of dynamic compression with and without the treatment of the pharmaceutical drug, anakinra (IL-1RA). Dynamic loading led to a strain-dependent response in both anabolic and catabolic gene expression of meniscal explants. By inhibiting the Interleukin-1 pathway with IL-1RA, a marked decrease in several catabolic molecules was found. From these studies, future developments in OA treatments may be developed. The implementation of an in vivo animal model contributes to the understanding of how the knee joint behaves as a whole. A novel closed-joint in vivo model that induces anterior cruciate ligament (ACL) rupture has been developed to better understand how traumatic injury leads to OA. The menisci of knees from three different groups (healthy, ACL transected, and traumatically impacted) were characterized using histomorphometry. The acute and chronic changes within the knee following traumatic impaction were investigated. The works presented in this dissertation have focused on the characterization, implementation, and development of mechanically-induced changes to the knee menisci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Although considerable bone fill may occur following treatment of peri-implantitis, re-osseointegration appears to be limited and unpredictable. Objectives: To evaluate the effects of various decontamination techniques and implant surface configurations on re-osseointegration of contaminated dental implants. MATERIAL AND METHODS: Three months after tooth extraction, implants consisting of a basal part and an exchangeable intraosseous implant cylinder (EIIC) were placed in the mandibles of dogs. The EIIC was machined (M), sandblasted and acid-etched (SLA), or titanium plasma sprayed (TPS). Ligature-induced peri-implantitis was initiated 8 weeks post-implantation and lasted until bone loss reached the junction of the two implant parts. Three treatment modalities were applied: (T1) the EIIC was exchanged for a pristine EIIC; (T2) the EIIC was sprayed in situ with saline; and (T3) the EIIC was removed, cleansed outside the mouth by spraying with saline, steam-sterilized, and remounted. A collagen barrier was placed over each fixture, and 3 months later, samples were processed for histology and histomorphometry. RESULTS: T2 revealed the highest bone-to-implant contact (BIC) level (significantly better than T1 and T3). T2 also yielded the highest bone crest level (significantly better than T1), followed by T3 (significantly better than T1). SLA showed the highest BIC level (significantly better than M), followed by TPS. There were no statistically significant differences in bone crest height between implant types. CONCLUSIONS: Both SLA implants and in situ cleansing resulted in the best re-osseointegration and bone fill of previously contaminated implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Using a rat model, we evaluated the kinetics and histomorphometry of ectopic bone formation in association with biomimetic implant coatings containing BMP-2. MATERIALS AND METHODS: One experimental and three control groups were set up: titanium-alloy discs coated with a biomimetically co-precipitated layer of calcium phosphate and BMP-2 [1.7 microg per disc (incorporated-BMP group)]; uncoated discs (control); discs biomimetically coated with a layer of calcium phosphate alone (control); and discs biomimetically coated with a layer of calcium phosphate bearing superficially adsorbed BMP-2 [0.98 microg per disc (control)]. Discs (n = 6 per group) were implanted subcutaneously in rats and retrieved at 7-day intervals over a period of 5 weeks for kinetic, histomorphometrical, morphological and histochemical analyses. RESULTS: In the incorporated-BMP-2 group, osteogenic activity was first observed 2 weeks after implantation and thereafter continued unabated until the end of the monitoring period. The net weekly rates of bone formation per disc were 5.8 mm3 at 2 weeks and 3.64 mm3 at 5 weeks. The total volumes of bone formed per disc at these junctures were 5.8 mm3 and 10.3 mm3, respectively. Bone tissue, which was formed by a direct ossification mechanism, was deposited at distances of up to 340 microm from the implant surfaces. The biomimetic coatings were degraded gradually, initially by foreign body giant cells alone and then also by osteoclasts. Forty percent of the coating material (and thus presumably of the incorporated BMP-2) remained at the end of the monitoring period. Hence, 60% of the incorporated BMP-2 had been released. At this 5-week juncture, no bone tissue was associated with any of the control implants. CONCLUSION: BMP-2 incorporated into biomimetic calcium phosphate coatings is capable not only of inducing bone formation at an ectopic site in vivo but also of doing so with a very high potency at a low pharmacological level, and of sustaining this activity for a considerable period of time. The sustainment of osteogenic activity is of great clinical importance for the osseointegration of dental and orthopedic implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperhomocysteinemia (HHCY) has been linked to fragility fractures and osteoporosis. Folate and vitamin B(12) deficiencies are among the main causes of HHCY. However, the impact of these vitamins on bone health has been poorly studied. This study analyzed the effect of folate and vitamin B(12) deficiency on bone in rats. We used two groups of rats: a control group (Co, n = 10) and a vitamin-deficient group (VitDef, n = 10). VitDef animals were fed for 12 wk with a folate- and vitamin B(12)-free diet. Co animals received an equicaloric control diet. Tissue and plasma concentrations of homocysteine (HCY), S-adenosyl-homocysteine (SAH), and S-adenosyl-methionine (SAM) were measured. Bone quality was assessed by biomechanical testing (maximum force of an axial compression test; F(max)), histomorphometry (bone area/total area; B.Ar./T.Ar.], and the measurement of biochemical bone turnover markers (osteocalcin, collagen I C-terminal cross-laps [CTX]). VitDef animals developed significant HHCY (Co versus VitDef: 6.8 +/- 2.7 versus 61.1 +/- 12.8 microM, p < 0.001) that was accompanied by a high plasma concentration of SAH (Co versus VitDef: 24.1 +/- 5.9 versus 86.4 +/- 44.3 nM, p < 0.001). However, bone tissue concentrations of HCY, SAH, and SAM were similar in the two groups. Fmax, B.Ar./T.Ar., OC, and CTX did not differ between VitDef and Co animals, indicating that bone quality was not affected. Folate and vitamin B(12) deficiency induces distinct HHCY but has no effect on bone health in otherwise healthy adult rats. The unchanged HCY metabolism in bone is the most probable explanation for the missing effect of the vitamin-free diet on bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design. An experimental animal study. Objective. To investigate histomorphometric and radiographical changes in the BB.4S rat model after PEEK (polyetheretherketone) nonfusion interspinous device implantation. Summary of Background Data. Clinical effectiveness of the PEEK nonfusion spine implant Wallis (Abbott, Bordeaux, France; now Zimmer, Warsaw, IN) is well documented. However, there is a lack of evidence on the long-term effects of this implant on bone, in particular its influence on structural changes of bone elements of the lumbar spine. Methods. Twenty-four male BB.4S rats aged 11 weeks underwent surgery for implantation of a PEEK nonfusion interspinous device or for a sham procedure in 3 groups of 8 animals each: 1) implantation at level L4–L5; 2) implantation at level L5–L6; and 3) sham surgery. Eleven weeks postoperatively osteolyses at the implant-bone interface were measured via radiograph, bone mineral density of vertebral bodies was analyzed using osteodensitometry, and bone mineral content as well as resorption of the spinous processes were examined by histomorphometry. Results. Resorption of the spinous processes at the site of the interspinous implant was found in all treated segments. There was no significant difference in either bone density of vertebral bodies or histomorphometric structure of the spinous processes between adjacent vertebral bodies, between treated and untreated segments and between groups. Conclusion. These findings indicate that resorption of spinous processes because of a result of implant loosening, inhibit the targeted load redistribution through the PEEK nonfusion interspinous device in the lumbar spinal segment of the rat. This leads to reduced long-term stability of the implant in the animal model. These results suggest that PEEK nonfusion interspinous devices like the Wallis implants may have time-limited effects and should only be used for specified indications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Zirconia (ZrO2 ) has received interest as a dental material; however, little information is available on the impact of surface modifications on the osseointegration of zirconia implants. PURPOSE: The aim of the present study was to determine the effect of acid or alkaline etching of sandblasted ZrO2 implants on bone apposition in vivo. METHODS: Cylindrical ZrO2 implants with two circumferential grooves were placed in the maxilla of 12 miniature pigs. Biopsies were harvested after 1, 2, 4, and 8 weeks of healing. Undecalcified toluidine blue-stained ground sections were produced. The bone-to-implant contact, the bone area, and the presence of multinucleated giant cells were determined by histomorphometry. An uncorrected explorative statistical analysis was performed. RESULTS: Acid etching but not alkaline etching of sandblasted ZrO2 implants caused more bone-to-implant contact than sandblasted ZrO2 implants. The bone area was unaffected by the surface modifications. Acid and alkaline etching both increased the formation of multinucleated giant cells at the implant surface. CONCLUSIONS: This study provides a scientific basis to further investigate the impact of acid etching of sandblasted ZrO2 implants on osseointegration and the role of multinucleated giant cells in this process.