424 resultados para dexamethasone


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exact phenotype of human periodontal ligament cells (hPDLCs) remains a controversial area. Basic fibroblast growth factor (FGF‑2) exhibits various functions and its effect on hPDLCs is also controversial. Therefore, the present study examined the effect of FGF‑2 on the growth and osteoblastic phenotype of hPDLCs with or without osteogenic inducers (dexamethasone and β‑glycerophosphate). FGF‑2 was added to defined growth culture medium and osteogenic inductive culture medium. Cell proliferation, osteogenic differentiation and mineralization were measured. The selected differentiation markers, Runx2, collagen type Ⅰ, α1 (Col1a1), osteocalcin (OCN) and epidermal growth factor receptor (EGFR), were investigated by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Runx2 and OCN protein expression was measured by western blotting. FGF‑2 significantly increased the proliferation of hPDLCs, but did not affect alkaline phosphatase activity. RT‑qPCR analysis revealed enhanced mRNA expression of Runx2, OCN and EGFR, but suppressed Col1a1 gene expression in the absence of osteogenic inducers, whereas all these gene levels had no clear trend in their presence. The Runx2 protein expression was clearly increased, but the OCN protein level showed no evident trend. The mineralization assay demonstrated that FGF‑2 inhibited mineralized matrix deposition with osteogenic inducers. These results suggested that FGF‑2 induces the growth of immature hPDLCs, which is a competitive inhibitor of epithelial downgrowth, and suppresses their differentiation into mineralized tissue by affecting Runx2 expression. Therefore, this may lead to the acceleration of periodontal regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clinical studies have demonstrated an impairment of glucocorticoid receptor (GR)-mediated negative feedback on the hypothalamic-pituitary-adrenal (HPA) axis in patients with major depression (GR resistance), and its resolution by antidepressant treatment. Recently, we showed that this impairment is indeed due to a dysfunction of GR in depressed patients (Carvalho et al., 2009), and that the ability of the antidepressant clomipramine to decrease GR function in peripheral blood cells is impaired in patients with major depression who are clinically resistant to treatment (Carvalho et al. 2008). To further investigate the effect of antidepressants on GR function in humans, we have compared the effect of the antidepressants clomipramine, amytriptiline, sertraline, paroxetine and venlafaxine, and of the antipsychotics, haloperidol and risperidone, on GR function in peripheral blood cells from healthy volunteers (n=33). GR function was measured by glucocorticoid inhibition of lypopolysaccharide (LPS)-stimulated interleukin-6 (IL-6) levels. Compared to vehicle-treated cells, all antidepressants inhibited dexamethasone (DEX, 10-100nM) inhibition of LPS-stimulated IL-6 levels (p values ranging from 0.007 to 0.1). This effect was specific to antidepressants, as antipsychotics had no effect on DEX-inhibition of LPS-stimulated IL-6 levels. The phosphodiesterase (PDE) type 4 inhibitor, rolipram, potentiated the effect of antidepressants on GR function, while the GR antagonist, RU-486, inhibited the effect of antidepressants on GR function. These findings indicate that the effect of antidepressants on GR function are specific for this class of psychotropic drugs, and involve second messenger pathways relevant to GR function and inflammation. Furthermore, it also points towards a possible mechanism by which one maybe able to overcome treatment-resistant depression. Research in this field will lead to new insights into the pathophysiology and treatment of affective disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: An imbalance between bone formation and bone resorption is thought to underlie the pathogenesis of reduced bone mass in osteoporosis. Bone resorption is carried out by osteoclasts, which are formed from marrow-derived cells that circulate in the monocyte fraction. Ihe aim of this study was to determine the role of osteoclast formation in the pathogenesis of bone loss in osteoporosis. Methods: The proportion of circulating osteoclast precursors and their relative sensitivity to the osteoclastogenic effects of M-CSF, 1,25(OH)2D3 and RANKL were assessed in primary osteoporosis patients and normal controls. Results: Although there was no difference in the number of circulating osteoclast precursors in osteoporosis patients and normal controls, osteoclasts formed from osteoporosis patients exhibited substantially increased resorptive activity relative to normal controls. Although no increased sensitivity to the osteoclastogenic effects of 1,25(OH)2D3 or M-CSF was noted, increased bone resorption was found in osteoporosis peripheral blood mononuclear cell (PBMC) cultures to which these factors were added. Conclusion: Our findings suggest that osteoclast functional activity rather than formation is increased in primary involutional osteoporosis and that dexamethasone acts to increase osteoclast formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of this study were to describe Finnish day surgery practice at present and to evaluate quality of care by assessing postdischarge minor morbidity and quality indicators. Potential treatment options were approached by investigating the role of oral dexamethasone as a part of multimodal analgesia and the feasibility of day surgery in patients aged 65 years and older. Over a 2-month period, all patient cases at 14 Finnish day surgery or short-stay units were analyzed (Study I). Quality indicators included rates and reasons for overnight admission, readmission, reoperation, cancellations, and patient satisfaction. Recovery during the first postoperative week was assessed at two units (Study II). Altogether 2732 patients graded daily the intensity of predefined symptoms. To define risk factors of postdischarge symptoms, multinomial regression analysis was used. Sixty patients scheduled to undergo day surgery for hallux valgus were randomized to receive twice perioperatively dexamethasone 9 mg or placebo (Study III). Paracetamol 1 g was administered 3 times daily. Rescue medication (oxycodone) consumption during 0-3 postoperative days (POD), maximal pain scores and adverse effects were documented. Medically stable patients aged 65 years or older, scheduled for open inguinal hernia repair, were randomized to receive treatment either as day cases or inpatients (Study IV). Complications, unplanned admissions, healthcare visits, and patients’ acceptance of the type of care provided were assessed during 2 weeks postoperatively. In Study I, unplanned overnight admissions were reported in 5.9%, return hospital visits during PODs 1-28 in 3.7%, and readmissions in 0.7% of patients. Patient satisfaction was high. In Study II, pain was the most common symptom in adult patients (57%). Postdischarge symptoms were more frequent in adults aged < 40 years, children aged ≥ 7 years, females, and following a longer duration of surgery. In Study III, the total median (range) oxycodone consumption during the study period was 45 (0–165) mg in the dexamethasone group, compared with 78 (15–175) mg in the placebo group (P < 0.049). On PODs 0-1, patients in the dexamethasone group reported significantly lower pain scores. Following inguinal hernia repair, no significant differences in outcome measures were seen between the study groups. Patient satisfaction was equally high in day cases and inpatients (Study IV). Finnish day surgery units provide good-quality services. Minor postdischarge symptoms are common, and they are influenced by several patient-, surgery-, and anesthesia-related factors. Oral dexamethasone combined with paracetamol improves pain relief and reduces the need for oxycodone rescue medication following correction of hallux valgus. Day surgery for open inguinal hernia repair is safe and well accepted by patients aged 65 years or older and can be recommended as the primary choice of care for medically stable patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present thesis was to study the role of the epithelial sodium channel (ENaC) in clearance of fetal lung fluid in the newborn infant by measurement of airway epithelial expression of ENaC, of nasal transepithelial potential difference (N-PD), and of lung compliance (LC). In addition, the effect of postnatal dexamethasone on airway epithelial ENaC expression was measured in preterm infants with bronchopulmonary dysplasia (BPD). The patient population was formed of selected term newborn infants born in the Department of Obstetrics (Studies II-IV) and selected preterm newborn infants treated in the neonatal intensive care unit of the Hospital for Children and Adolescents (Studies I and IV) of the Helsinki University Central Hospital in Finland. A small population of preterm infants suffering from BPD was included in Study I. Studies I, III, and IV included airway epithelial measurement of ENaC and in Studies II and III, measurement of N-PD and LC. In Study I, ENaC expression analyses were performed in the Research Institute of the Hospital for Sick Children in Toronto, Ontario, Canada. In the following studies, analyses were performed in the Scientific Laboratory of the Hospital for Children and Adolescents. N-PD and LC measurements were performed at bedside in these hospitals. In term newborn infants, the percentage of amiloride-sensitive N-PD, a surrogate for ENaC activity, measured during the first 4 postnatal hours correlates positively with LC measured 1 to 2 days postnatally. Preterm infants with BPD had, after a therapeutic dose of dexamethasone, higher airway epithelial ENaC expression than before treatment. These patients were subsequently weaned from mechanical ventilation, probably as a result of the clearance of extra fluid from the alveolar spaces. In addition, we found that in preterm infants ENaC expression increases with gestational age (GA). In preterm infants, ENaC expression in the airway epithelium was lower than in term newborn infants. During the early postnatal period in those born both preterm and term airway epithelial βENaC expression decreased significantly. Term newborn infants delivered vaginally had a significantly smaller airway epithelial expression of αENaC after the first postnatal day than did those delivered by cesarean section. The functional studies showed no difference in N-PD between infants delivered vaginally and by cesarean section. We therefore conclude that the low airway epithelial expression of ENaC in the preterm infant and the correlation of N-PD with LC in the term infant indicate a role for ENaC in the pathogenesis of perinatal pulmonary adaptation and neonatal respiratory distress. Because dexamethasone raised ENaC expression in preterm infants with BPD, and infants were subsequently weaned from ventilator therapy, we suggest that studies on the treatment of respiratory distress in the preterm infant should include the induction of ENaC activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was designed to improve the bioavailability of forskolin by the influence of precorneal residence time and dissolution characteristics. Nanosizing is an advanced approach to overcome the issue of poor aqueous solubility of active pharmaceutical ingredients. Forskolin nanocrystals have been successfully manufactured and stabilized by poloxamer 407. These nanocrystals have been characterized in terms of particle size by scanning electron microscopy and dynamic light scattering. By formulating Noveon AA-1 polycarbophil/poloxamer 407 platforms, at specific concentrations, it was possible to obtain a pH and thermoreversible gel with a pH(gel)/T-gel close to eye pH/temperature. The addition of forskolin nanocrystals did not alter the gelation properties of Noveon AA-1 polycarbophil/poloxamer 407 and nanocrystal properties of forskolin. The formulation was stable over a period of 6 months at room temperature. In vitro release experiments indicated that the optimized platform was able to prolong and control forskolin release for more than 5 h. The in vivo studies on dexamethasone-induced glaucomatous rabbits indicated that the intraocular pressure lowering efficacy for nanosuspension/hydrogel systems was 31% and lasted for 12 h, which is significantly better than the effect of traditional eye suspension (18%, 4-6 h). Hence, our investigations successfully prove that the pH and thermoreversible polymeric in situ gel-forming nanosuspension with ability of controlled drug release exhibits a greater potential for glaucoma therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The region -160 to -127 nt of the upstream of CYP-2B1/B2 gene has been found to function as a negative cis-acting element on the basis of DNase-I footprint and gel mobility shift assays as well as cell-free transcriptional assays using Bal-31 mutants. A reciprocal relationship in the interaction of the negative and the recently characterized positive elements with their respective protein factors has been found under repressed and induced conditions of the gene. The negative element also harbors the core glucocorticoid responsive sequence, TGTCCT. It is concluded that the negative element mediates the repressed state of the gene under the uninduced condition and also mediates the repressive effect of dexamethasone, when given along with the inducer phenobarbitone in rats. Dexamethasone is able to antagonize the effects of phenobarbitone at as low a concentration as 100 mu g/kg body wt in these animals. (C) 1995 Academic Press,Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycystic Ovary Syndrome (PCOS) is a complex disorder encompassing reproductive and metabolic dysfunction. Ovarian hyperandrogenism is an endocrine hallmark of human PCOS. In animal models, PCOS-like abnormalities can be recreated by in utero over-exposure to androgenic steroid hormones. This thesis investigated pancreatic and adrenal development and function in a unique model of PCOS. Fetal sheep were directly exposed (day 62 and day 82 of gestation) to steroidal excesses - androgen excess (testosterone propionate - TP), estrogen excess (diethylstilbestrol - DES) or glucocorticoid excess (dexamethasone - DEX). At d90 gestation there was elevated expression of genes involved in β- cell development and function: PDX-1 (P<0.001), and INS (P<0.05), INSR (P<0.05) driven by androgenic excess only in the female fetal pancreas. β- cell numbers (P<0.001) and in vitro insulin secretion (P<0.05) were also elevated in androgen exposed female fetuses. There was a significant increase in insulin secreting β-cell numbers (P<0.001) and in vivo insulin secretion (glucose stimulated) (P<0.01) in adult female offspring, specifically associated with prenatal androgen excess. At d90 gestation, female fetal adrenal gene expression was perturbed by fetal estrogenic exposure. Male fetal adrenal gene expression was altered more dramatically by fetal glucocorticoid exposure. In female adult offspring from androgen exposed pregnancies there was increased adrenal steroidogenic gene expression and in vivo testosterone secretion (P<0.01). This highlights that the adrenal glands may contribute towards excess androgen secretion in PCOS, but such effects might be secondary to other metabolic alterations driven by prenatal androgen exposure, such as excess insulin secretion Thus there may be dialogue between the pancreas and adrenal gland, programmed during early life, with implications for adult health Given both hyperinsulinaemia and hyperandrogenism are common features in PCOS, we suggest that their origins may be at least partially due to altered fetal steroidal environments, specifically excess androgenic stimulation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD thesis describes work carried out on investigation of various interventions with the aim to optimise the anaesthetic management of patients scheduled to undergo operative fixation of hip fractures. We analysed the perioperative effects of continuous femoral nerve block, single preoperative dose of i.v. dexamethasone, the intention to deposit local anaesthetic in different locations around the femoral nerve during ultrasound guided femoral nerve block, continuous spinal anaesthesia and peri-surgical site infiltration with local anaesthetic after surgical fixation of hip fractures. Continuous femoral nerve block provided more effective preoperative analgesia six hours after the insertion of the perineural catheter compared to a standard opiate-based regimen in patients undergoing operative fixation of fractured hip. A single low dose of preoperative dexamethasone in the intervention group decreased pain scores by 75% six hours after the surgery. Both interventions had no major effect on the functional recovery in the first year after the surgical fixation of fractured hip. The results of the ultrasound guided femoral nerve block trial showed no clinical advantage of intending to deposit local anaesthetic circumferentially during performing femoral nerve block. Using the Dixon and Massey’s “up- and-down” method, we demonstrated that intrathecal 0.26 ml of 0.5% bupivacaine provided adequate surgical anaesthesia within 15 minutes in 50% of patients undergoing operative fixation of hip fracture. Finally, we demonstrated that local anaesthetic infiltration had no effect on pain scores 12 hours after the surgical fixation of fractured neck of femur. In addition to this original body of work, a review article was published on femoral nerve block highlighting the use of ultrasound guidance. In conclusion, the results of this thesis offer an insight into interventions aimed at optimising perioperative analgesia in patients scheduled to undergo operative fixation of hip fractures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Adipose-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (MSCs) are multipotent adult stem cells with potential for use in cartilage tissue engineering. We hypothesized that these cells show distinct responses to different chondrogenic culture conditions and extracellular matrices, illustrating important differences between cell types. METHODS: Human ASCs and MSCs were chondrogenically differentiated in alginate beads or a novel scaffold of reconstituted native cartilage-derived matrix with a range of growth factors, including dexamethasone, transforming growth factor beta3, and bone morphogenetic protein 6. Constructs were analyzed for gene expression and matrix synthesis. RESULTS: Chondrogenic growth factors induced a chondrocytic phenotype in both ASCs and MSCs in alginate beads or cartilage-derived matrix. MSCs demonstrated enhanced type II collagen gene expression and matrix synthesis as well as a greater propensity for the hypertrophic chondrocyte phenotype. ASCs had higher upregulation of aggrecan gene expression in response to bone morphogenetic protein 6 (857-fold), while MSCs responded more favorably to transforming growth factor beta3 (573-fold increase). CONCLUSIONS: ASCs and MSCs are distinct cell types as illustrated by their unique responses to growth factor-based chondrogenic induction. This chondrogenic induction is affected by the composition of the scaffold and the presence of serum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although steroid hormones are known to play a predominant role in the regulation of cell growth in hormone-sensitive cancers, their mechanisms of action, especially their interaction with growth factors and/or growth inhibitors, is poorly understood. We have recently observed that the effects of androgens and estrogens on the expression of the major protein found in human breast gross cystic disease fluid, protein-24, are opposite to their respective action on cell proliferation in human breast cancer cell lines. Somewhat surprisingly, the recent elucidation of the amino acid sequence of this progesterone binding protein reveals that this tumor marker is apolipoprotein D (apo D), a member of a superfamily of lipophilic ligand carrier proteins. The present study was designed to determine whether apo D is secreted by human prostate cancer cells and could thus be a new marker of steroid action in these cancer cells, and whether the sex steroid-induced stimulation of apo D secretion coincides with inhibition of cell proliferation. We took advantage of the biphasic pattern of the effect of steroids on the proliferation of the human prostate cancer LNCaP cell line, which offers the opportunity to discriminate between positive and negative steroid receptor-regulated cell growth processes. A 10-day exposure to low concentrations of dihydrotestosterone and testosterone caused a potent stimulation of LNCaP cell proliferation, whereas incubation with higher concentrations of these androgens led to a progressive decrease in cell proliferation towards basal levels. The biphasic action of androgens was also observed on apo D secretion, the effects on apo D secretion being inversely related to their action on LNCaP cell proliferation. Similar opposite biphasic effects were also observed with 9 other steroids, thus indicating that the stimulation of secretion of this new biochemical marker coincides with inhibition of cell proliferation in LNCaP human prostatic cancer cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms by which excessive glucocorticoids cause muscular atrophy remain unclear. We previously demonstrated that dexamethasone increases the expression of myostatin, a negative regulator of skeletal muscle mass, in vitro. In the present study, we tested the hypothesis that dexamethasone-induced muscle loss is associated with increased myostatin expression in vivo. Daily administration (60, 600, 1,200 micro g/kg body wt) of dexamethasone for 5 days resulted in rapid, dose-dependent loss of body weight (-4.0, -13.4, -17.2%, respectively, P <0.05 for each comparison), and muscle atrophy (6.3, 15.0, 16.6% below controls, respectively). These changes were associated with dose-dependent, marked induction of intramuscular myostatin mRNA (66.3, 450, 527.6% increase above controls, P <0.05 for each comparison) and protein expression (0.0, 260.5, 318.4% increase above controls, P <0.05). We found that the effect of dexamethasone on body weight and muscle loss and upregulation of intramuscular myostatin expression was time dependent. When dexamethasone treatment (600 micro g. kg-1. day-1) was extended from 5 to 10 days, the rate of body weight loss was markedly reduced to approximately 2% within this extended period. The concentrations of intramuscular myosin heavy chain type II in dexamethasone-treated rats were significantly lower (-43% after 5-day treatment, -14% after 10-day treatment) than their respective corresponding controls. The intramuscular myostatin concentration in rats treated with dexamethasone for 10 days returned to basal level. Concurrent treatment with RU-486 blocked dexamethasone-induced myostatin expression and significantly attenuated body loss and muscle atrophy. We propose that dexamethasone-induced muscle loss is mediated, at least in part, by the upregulation of myostatin expression through a glucocorticoid receptor-mediated pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myostatin is a negative regulator of skeletal muscle growth. We have previously reported that recombinant myostatin protein inhibits DNA and protein synthesis in C2C12 cells. Our objective was to assess if C2C12 cells express myostatin, determine its sub-cellular localization and the developmental stage of C2C12 cells in which myostatin mRNA and protein are expressed. To study the endogenous expression of myostatin, C2C12 myoblasts were allowed to progress to myotubes, and changes in the levels of endogenous myostatin mRNA expression were determined by RT-PCR. The myostatin protein and the two major myosin heavy chain (MHC) isoforms (MHC-I and -II) were determined by Western blot. Confirmation of the relative MHC expression patterns was obtained by a modified polyacrylamide gel electropheretic (PAGE) procedure. Imunofluorescence staining was employed to localize the site of myostatin expression and the relative distribution of the MHC isoforms. Co-expression of these proteins was studied using a dual staining approach. Expression of myostatin mRNA was found in myotubes but not in myoblasts. Myostatin protein was seen in most but not all, of the nuclei of polynucleated fibers expressing MHC-II, and myostatin was detected in the cytoplasm of myotube. The localization of myostatin protein in myotube nuclei was confirmed by Western blot of isolated nuclear and cytoplasmic fractions. Incubation of C2C12 myotubes with graded doses of dexamethasone dose-dependently increased the intensity of nuclear myostatin immunostaining and also resulted in the appearance of cytoplasmic expression. In conclusion, myostatin was expressed mostly in C2C12 myotubes nuclei expressing MHC-II. Its predominant

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goals were to compare early school-age neurodevelopmental and respiratory outcomes for children who were treated with either early (15 days) postnatal corticosteroid therapy and to compare systemic dexamethasone treatment with inhaled budesonide treatment.