987 resultados para cell disruption


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inheritance of a mutant allele of the von Hippel-Lindau tumor suppressor gene predisposes affected individuals to develop renal cysts and clear cell renal cell carcinoma. Von Hippel-Lindau gene inactivation in single renal tubular cells has indirectly been showed by immunohistochemical staining for the hypoxia-inducible factor alpha target gene product carbonic anhydrase IX. In this study we were able to show von Hippel-Lindau gene deletion in carbonic anhydrase IX positive nonneoplastic renal tubular cells, in epithelial cells lining renal cysts and in a clear cell renal cell carcinoma of a von Hippel-Lindau patient. This was carried out by means of laser confocal microscopy and immunohistochemistry in combination with fluorescence in situ hybridization. Carbonic anhydrase IX negative normal renal tubular cells carried no von Hippel-Lindau gene deletion. Furthermore, recent studies have indicated that the von Hippel-Lindau gene product is necessary for the maintenance of primary cilia stability in renal epithelial cells and that disruption of the cilia structure by von Hippel-Lindau gene inactivation induces renal cyst formation. In our study, we show a significant shortening of primary cilia in epithelial cells lining renal cysts, whereas, single tubular cells with a von Hippel-Lindau gene deletion display to a far lesser extent signs of cilia shortening. Our in vivo results support a model in which renal cysts represent precursor lesions for clear cell renal cell carcinoma and arise from single renal tubular epithelial cells owing to von Hippel-Lindau gene deletion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although tumor surveillance by T and B lymphocytes is well studied, the role of innate immune cells, in particular macrophages, is less clear. Moreover, the existence of subclonal genetic and functional diversity in some human cancers such as leukemia underscores the importance of defining tumor surveillance mechanisms that effectively target the disease-sustaining cancer stem cells in addition to bulk cells. In this study, we report that leukemia stem cell function in xenotransplant models of acute myeloid leukemia (AML) depends on SIRPα-mediated inhibition of macrophages through engagement with its ligand CD47. We generated mice expressing SIRPα variants with differential ability to bind human CD47 and demonstrated that macrophage-mediated phagocytosis and clearance of AML stem cells depend on absent SIRPα signaling. We obtained independent confirmation of the genetic restriction observed in our mouse models by using SIRPα-Fc fusion protein to disrupt SIRPα-CD47 engagement. Treatment with SIRPα-Fc enhanced phagocytosis of AML cells by both mouse and human macrophages and impaired leukemic engraftment in mice. Importantly, SIRPα-Fc treatment did not significantly enhance phagocytosis of normal hematopoietic targets. These findings support the development of therapeutics that antagonize SIRPα signaling to enhance macrophage-mediated elimination of AML.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset neurological disease resulting from mutations in the SACS gene encoding sacsin, a 4,579-aa protein of unknown function. Originally identified as a founder disease in Québec, ARSACS is now recognized worldwide. Prominent features include pyramidal spasticity and cerebellar ataxia, but the underlying pathology and pathophysiological mechanisms are unknown. We have generated an animal model for ARSACS, sacsin knockout mice, that display age-dependent neurodegeneration of cerebellar Purkinje cells. To explore the pathophysiological basis for this observation, we examined the cell biological properties of sacsin. We show that sacsin localizes to mitochondria in non-neuronal cells and primary neurons and that it interacts with dynamin-related protein 1, which participates in mitochondrial fission. Fibroblasts from ARSACS patients show a hyperfused mitochondrial network, consistent with defects in mitochondrial fission. Sacsin knockdown leads to an overly interconnected and functionally impaired mitochondrial network, and mitochondria accumulate in the soma and proximal dendrites of sacsin knockdown neurons. Disruption of mitochondrial transport into dendrites has been shown to lead to abnormal dendritic morphology, and we observe striking alterations in the organization of dendritic fields in the cerebellum of knockout mice that precedes Purkinje cell death. Our data identifies mitochondrial dysfunction/mislocalization as the likely cellular basis for ARSACS and indicates a role for sacsin in regulation of mitochondrial dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of mutations that cause isolated GH deficiency type II (IGHD II) affect splicing of GH-1 transcripts and produce a dominant-negative GH isoform lacking exon 3 resulting in a 17.5-kDa isoform, which further leads to disruption of the GH secretory pathway. A clinical variability in the severity of the IGHD II phenotype depending on the GH-1 gene alteration has been reported, and in vitro and transgenic animal data suggest that the onset and severity of the phenotype relates to the proportion of 17.5-kDa produced. The removal of GH in IGHD creates a positive feedback loop driving more GH expression, which may itself increase 17.5-kDa isoform productions from alternate splice sites in the mutated GH-1 allele. In this study, we aimed to test this idea by comparing the impact of stimulated expression by glucocorticoids on the production of different GH isoforms from wild-type (wt) and mutant GH-1 genes, relying on the glucocorticoid regulatory element within intron 1 in the GH-1 gene. AtT-20 cells were transfected with wt-GH or mutated GH-1 variants (5'IVS-3 + 2-bp T->C; 5'IVS-3 + 6 bp T->C; ISEm1: IVS-3 + 28 G->A) known to cause clinical IGHD II of varying severity. Cells were stimulated with 1 and 10 mum dexamethasone (DEX) for 24 h, after which the relative amounts of GH-1 splice variants were determined by semiquantitative and quantitative (TaqMan) RT-PCR. In the absence of DEX, only around 1% wt-GH-1 transcripts were the 17.5-kDa isoform, whereas the three mutant GH-1 variants produced 29, 39, and 78% of the 17.5-kDa isoform. DEX stimulated total GH-1 gene transcription from all constructs. Notably, however, DEX increased the amount of 17.5-kDa GH isoform relative to the 22- and 20-kDa isoforms produced from the mutated GH-1 variants, but not from wt-GH-1. This DEX-induced enhancement of 17.5-kDa GH isoform production, up to 100% in the most severe case, was completely blocked by the addition of RU486. In other studies, we measured cell proliferation rates, annexin V staining, and DNA fragmentation in cells transfected with the same GH-1 constructs. The results showed that that the 5'IVS-3 + 2-bp GH-1 gene mutation had a more severe impact on those measures than the splice site mutations within 5'IVS-3 + 6 bp or ISE +28, in line with the clinical severity observed with these mutations. Our findings that the proportion of 17.5-kDa produced from mutant GH-1 alleles increases with increased drive for gene expression may help to explain the variable onset progression, and severity observed in IGHD II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recently reported that the pathogenesis of pemphigus vulgaris (PV), an autoimmune blistering skin disorder, is driven by the accumulation of c-Myc secondary to abrogation of plakoglobin (PG)-mediated transcriptional c-Myc suppression. PG knock-out mouse keratinocytes express high levels of c-Myc and resemble PVIgG-treated wild-type keratinocytes in most respects. However, they fail to accumulate nuclear c-Myc and loose intercellular adhesion in response to PVIgG-treatment like wild-type keratinocytes. This suggested that PG is also required for propagation of the PVIgG-induced events between augmented c-Myc expression and acantholysis. Here, we addressed this possibility by comparing PVIgG-induced changes in the desmosomal organization between wild-type and PG knock-out keratinocytes. We found that either bivalent PVIgG or monovalent PV-Fab (known to trigger blister formation in vivo) disrupt the linear organization of all major desmosomal components along cell borders in wild-type keratinocytes, simultaneously with a reduction in intercellular adhesive strength. In contrast, PV-Fab failed to affect PG knock-out keratinocytes while PVIgG cross-linked their desmosomal cadherins without significantly affecting desmoplakin. These results identify PG as a principle effector of the PVIgG-induced signals downstream of c-Myc that disrupt the desmosomal plaque at the plasma membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of HIV-1 RNA during structured treatment interruptions (STIs) are well established, but little is known about viral proteins like p24. We studied 65 participants of an STI trial. Before the trial, continuous highly active antiretroviral therapy (HAART) had suppressed their viral load to <50 copies/mL during 6 months. They then interrupted HAART during weeks 1 through 2, 11 through 12, 21 through 22, 31 through 32, and 41 through 52. The p24 was measured by boosted enzyme-linked immunosorbent assay of plasma pretreated by efficient virus disruption and heat denaturation. At time point 0, p24 was measurable in 22 patients (34%), who had maintained a viral load <50 copies/mL for 25.4 months (median, range: 6.2-38.9 months) under HAART. Viral rebounds during 2-week STIs led to a mean p24 increase of only 0.08 to 0.19 log10 (ie, 20%-60%). Pre-HAART viral load and p24 at time 0 independently predicted p24 rebounds during the 4 2-week STIs. The p24 at time 0 and HIV-1 RNA rebound during weeks 41 through 52 independently determined the concomitant p24 rebound. An increase of p24 but not viral load during the first 8 weeks of the long STI correlated significantly with concomitant CD4(+) T cell loss. Persisting p24 despite successful HAART may reflect virus replication in reservoirs not represented by plasma viral load and has implications for the concept of therapeutic vaccination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FGFRL1 is a recently discovered member of the fibroblast growth factor receptor family that is lacking the intracellular tyrosine kinase domain. To elucidate the function of the novel receptor, we created mice with a targeted disruption of the Fgfrl1 gene. These mice develop normally until term, but die within a few minutes after birth due to respiratory failure. The respiratory problems are explained by a significant reduction in the size of the diaphragm muscle, which is not sufficient to inflate the lungs after birth. The remaining portion of the diaphragm muscle appears to be well developed and innervated. It consists of differentiated myofibers with nuclei at the periphery. Fast and slow muscle fibers occur in normal proportions. The myogenic regulatory factors MyoD, Myf5, myogenin and Mrf4 and the myocyte enhancer factors Mef2A, Mef2B, Mef2C and Mef2D are expressed at normal levels. Experiments with a cell culture model involving C2C12 myoblasts show that Fgfrl1 is expressed during the late stages of myotube formation. Other skeletal muscles do not appear to be affected in the Fgfrl1 deficient mice. Thus, Fgfrl1 plays a critical role in the development of the diaphragm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are the two major constituents of eukaryotic cell membranes. In the protist Trypanosoma brucei, PE and PC are synthesized exclusively via the Kennedy pathway. To determine which organelles or processes are most sensitive to a disruption of normal phospholipid levels, the cellular consequences of a decrease in the levels of PE or PC, respectively, were studied following RNAi knock-down of four enzymes of the Kennedy pathway. RNAi against ethanolamine-phosphate cytidylyltransferase (ET) disrupted mitochondrial morphology and ultrastructure. Electron microscopy revealed alterations of inner mitochondrial membrane morphology, defined by a loss of disk-like cristae. Despite the structural changes in the mitochondrion, the cells maintained oxidative phosphorylation. Our results indicate that the inner membrane morphology of T. brucei procyclic forms is highly sensitive to a decrease of PE levels, as a change in the ultrastructure of the mitochondrion is the earliest phenotype observed after RNAi knock-down of ET. Interference with phospholipid synthesis also impaired normal cell-cycle progression. ET RNAi led to an accumulation of multinucleate cells. In contrast, RNAi against choline-/ethanolamine phosphotransferase, which affected PC as well as PE levels, caused a cell division phenotype characterized by non-division of the nucleus and production of zoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a high incidence of infertility in males following traumatic spinal cord injury (SCI). Quality of semen is frequently poor in these patients, but the pathophysiological mechanism(s) causing this are not known. Blood-testis barrier (BTB) integrity following SCI has not previously been examined. The objective of this study was to characterize the effects of spinal contusion injury on the BTB in the rat. 63 adult, male Sprague Dawley rats received SCI (n = 28), laminectomy only (n = 7) or served as uninjured, age-matched controls (n = 28). Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), BTB permeability to the vascular contrast agent gadopentate dimeglumine (Gd) was assessed at either 72 hours-, or 10 months post-SCI. DCE-MRI data revealed that BTB permeability to Gd was greater than controls at both 72 h and 10 mo post-SCI. Histological evaluation of testis tissue showed increased BTB permeability to immunoglobulin G at both 72 hours- and 10 months post-SCI, compared to age-matched sham-operated and uninjured controls. Tight junctional integrity within the seminiferous epithelium was assessed; at 72 hours post-SCI, decreased expression of the tight junction protein occludin was observed. Presence of inflammation in the testes was also examined. High expression of the proinflammatory cytokine interleukin-1 beta was detected in testis tissue. CD68(+) immune cell infiltrate and mast cells were also detected within the seminiferous epithelium of both acute and chronic SCI groups but not in controls. In addition, extensive germ cell apoptosis was observed at 72 h post-SCI. Based on these results, we conclude that SCI is followed by compromised BTB integrity by as early as 72 hours post-injury in rats and is accompanied by a substantial immune response within the testis. Furthermore, our results indicate that the BTB remains compromised and testis immune cell infiltration persists for months after the initial injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disruption of the blood-brain and blood-spinal cord barriers (BBB and BSCB, respectively) and immune cell infiltration are early pathophysiological hallmarks of multiple sclerosis (MS), its animal model experimental autoimmune encephalomyelitis (EAE), and neuromyelitis optica (NMO). However, their contribution to disease initiation and development remains unclear. In this study, we induced EAE in lys-eGFP-ki mice and performed single, nonterminal intravital imaging to investigate BSCB permeability simultaneously with the kinetics of GFP(+) myeloid cell infiltration. We observed a loss in BSCB integrity within a day of disease onset, which paralleled the infiltration of GFP(+) cells into the CNS and lasted for ∼4 d. Neutrophils accounted for a significant proportion of the circulating and CNS-infiltrating myeloid cells during the preclinical phase of EAE, and their depletion delayed the onset and reduced the severity of EAE while maintaining BSCB integrity. We also show that neutrophils collected from the blood or bone marrow of EAE mice transmigrate more efficiently than do neutrophils of naive animals in a BBB cell culture model. Moreover, using intravital videomicroscopy, we demonstrate that the IL-1R type 1 governs the firm adhesion of neutrophils to the inflamed spinal cord vasculature. Finally, immunostaining of postmortem CNS material obtained from an acutely ill multiple sclerosis patient and two neuromyelitis optica patients revealed instances of infiltrated neutrophils associated with regions of BBB or BSCB leakage. Taken together, our data provide evidence that neutrophils are involved in the initial events that take place during EAE and that they are intimately linked with the status of the BBB/BSCB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coordinated exit of intracellular pathogens from host cells is a process critical to the success and spread of an infection. While phospholipases have been shown to play important roles in bacteria host cell egress and virulence, their role in the release of intracellular eukaryotic parasites is largely unknown. We examined a malaria parasite protein with phospholipase activity and found it to be involved in hepatocyte egress. In hepatocytes, Plasmodium parasites are surrounded by a parasitophorous vacuole membrane (PVM), which must be disrupted before parasites are released into the blood. However, on a molecular basis, little is known about how the PVM is ruptured. We show that Plasmodium berghei phospholipase, PbPL, localizes to the PVM in infected hepatocytes. We provide evidence that parasites lacking PbPL undergo completely normal liver stage development until merozoites are produced but have a defect in egress from host hepatocytes. To investigate this further, we established a live-cell imaging-based assay, which enabled us to study the temporal dynamics of PVM rupture on a quantitative basis. Using this assay we could show that PbPL-deficient parasites exhibit impaired PVM rupture, resulting in delayed parasite egress. A wild-type phenotype could be re-established by gene complementation, demonstrating the specificity of the PbPL deletion phenotype. In conclusion, we have identified for the first time a Plasmodium phospholipase that is important for PVM rupture and in turn for parasite exit from the infected hepatocyte and therefore established a key role of a parasite phospholipase in egress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vertebrate thyroid system is important for multiple developmental processes, including eye development. Thus, its environmentally induced disruption may impact important fitness-related parameters like visual capacities and behaviour. The present study investigated the relation between molecular effects of thyroid disruption and morphological and physiological changes of eye development in zebrafish (Danio rerio). Two test compounds representing different molecular modes of thyroid disruption were used: propylthiouracil (PTU), which is an enzyme-inhibitor of thyroid hormone synthesis, and tetrabromobisphenol A (TBBPA), which interacts with the thyroid hormone receptors. Both chemicals significantly altered transcript levels of thyroid system-related genes (TRα, TRβ, TPO, TSH, DIO1, DIO2 and DIO3) in a compound-specific way. Despite these different molecular response patterns, both treatments resulted in similar pathological alterations of the eyes such as reduced size, RPE cell diameter and pigmentation, which were concentration-dependent. The morphological changes translated into impaired visual performance of the larvae: the optokinetic response was significantly and concentration-dependently decreased in both treatments, together with a significant increase of light preference of PTU-treated larvae. In addition, swimming activity was impacted. This study provides first evidence that different modes of molecular action of the thyroid disruptors can be associated with uniform apical responses. Furthermore, this study is the first to show that pathological eye development, as it can be induced by exposure to thyroid disruptors, indeed translates into impaired visual capacities of zebrafish early life stages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selection of division sites and coordination of cytokinesis with other cell cycle events are critical for every organism to proliferate. In E. coli, the nucleoid is proposed to exclude division from the site of the chromosome (nucleoid occlusion model). We studied the effect of the nucleoid on timing and placement of cell division. An early cell division protein, FtsZ, was used to follow development of the division septum. FtsZ forms a ring structure (Z ring) at potential division sites. The dynamics of Z ring was visualized in live cells by fusing FtsZ with a green fluorescent protein (GFP). Emanating FtsZ-GFP polymers from the constricted septum or aggregates in daughter cells were also observed, probably representing the FtsZ depolymerization and immature FtsZ nucleation processes. We next examined the nucleoid occlusion model. Mutants carrying abnormally positioned chromosomes were employed. In chromosomal partition mutants, replicated chromosomes cannot segregate. The Z ring was excluded from midcell to the edge of the nucleoid. This negative effect of nucleoids was further confirmed in replication deficient dnaA mutants, in which only a single chromosome is present in the cell center. These results suggest that the nucleoid, replicating or not, inhibits division in the area where the chromosome occupies. In addition, increasing the level of FtsZ does not overcome nucleoid inhibition. Interestingly in anucleate cells produced by both mutants, the Z ring was localized in the central part of the cell, which indicates that the nucleoid is not required for FtsZ assembly. Relaxation of chromosomes by reducing the gyrase activity or disruption of protein translation/translocation did not abolish the division inhibition capacity of the nucleoid. However, preventing transcription did compromise the nucleoid occlusion effect, leading to formation of multiple FtsZ rings above the nucleoid. In summary, we demonstrate that nucleoids negatively regulate the timing and position of division by inhibiting FtsZ assembly at unselected sites. Relief of this inhibition at midcell is coincident with the completion of DNA replication. On the other hand, FtsZ assembly does not require the nucleoid. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin-like growth factor binding protein 2 (IGFBP2) is a protein known to be overexpressed in a majority of glioblastoma multiforme (GBM) tumors. While it is known the IGFBP2 is involved in promoting GBM tumor cell invasion, no mechanism exists for how the protein is involved in signal transduction pathways leading to enhanced cell invasion. ^ We follow up on preliminary microarray data on IGFBP2-overexpressing GBM cells and protein sequence analysis of IGFBP2 in generating the hypothesis that IGFBP2 interacts with integnn α5 in regulating cell mobility. Microarray data showing upregulation of integrin α5 by IGFBP2 is validated and evidence of protein-protein interaction between IGFBP2 and integrin α5 is found. The exact binding domain on IGFBP2 responsible for its interaction with integrin α5 is also determined, confirming our initial findings and reaffirming that the IGFBP2/integrin α5 interaction is specific. Disruption of this interaction resulted in attenuation of IGFBP2-enhanced cell mobility. Further, we found that cell mobility is only enhanced when IGFBP2 and integrin α5 are both overexpressed and able to interact with each other. ^ We also determined fibronectin to be a critical player in the activation of the IGFBP2/integrin α5 pathway. The activation of this pathway appears to be progressive and initiates once GBM cells have sufficiently established anchorage. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several immune pathologies are the result of aberrant regulation of T lymphocytes. Pronounced T cell proliferation can result in autoimmunity or hematologic malignancy, whereas loss of T cell activity can manifest as immunodeficiency. Thus, there is a critical need to characterize the signal transduction pathways that mediate T cell activation so that novel and rational strategies to detect and effectively control T cell mediated disease can be achieved. ^ The first objective of this dissertation was to identify and characterize novel T cell regulatory proteins that are differentially expressed upon antigen induced activation. Using a functional proteomics approach, two members of the prohibitin (Phb) family of proteins, Phb1 and Phb2, were determined to be upregulated upon activation of primary human T cells. Furthermore, their regulated expression was dependent upon CD3 and CD28 signaling pathways which synergistically increased their expression. In contrast to previous reports of Phb nuclear localization, both proteins were determined to localize to the mitochondrial inner membrane of human T cells. Additionally, novel Phb phosphorylation sites were identified and characterized using mass spectrometry, phosphospecific antibodies and site directed mutagenesis. ^ Prohibitins have been proposed to play important roles in cancer development however the mechanism of action has not been elucidated. The second objective of this dissertation was to define the functional role of Phbs in T cell activity, survival and disease. Compared to levels in normal human T cells, Phb expression was higher in the human tumor T cell line Kit225 and subcellularly localized to the mitochondrion. Ablation of Phb expression by siRNA treatment of Kit225 cells resulted in disruption of mitochondrial membrane potential and significantly enhanced their sensitivity to cell death, suggesting they serve a protective function in T cells. Furthermore, Q-RT-PCR analysis of human oncology cDNA expression libraries indicated the Phbs may represent hematological cancer biomarkers. Indeed, Phb1 and Phb2 protein levels were 6-10 fold higher in peripheral blood mononuclear cells isolated from malignant lymphoma and multiple myeloma patients compared to healthy individuals. ^ Taken together, Phb1 and Phb2 are novel phosphoproteins upregulated during T cell activation and transformation to function in the maintenance of mitochondrial integrity and perhaps energy metabolism, thus representing previously unrecognized intracellular biomarkers and therapeutic targets for regulating T cell activation and hematologic malignancies. ^