938 resultados para antioxidant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to examine the effects of chemical nonylphenols (NPs) on the antioxidant system of Microcystis aeruginosa strains. The degradation and sorption of NPs by M. aeruginosa were also evaluated. High concentrations of NPs (1 and 2 mg/l) were found to cause increases in superoxidase dismutase (SOD) and glutathione-S-transferase (GST) activities and in glutathione (GSH) levels. These results suggest that toxic stress manifested by elevated SOD and GST levels and GSH contents may be responsible for the toxicity of NPs to M. aeruginosa and that the algal cells could improve their antioxidant and detoxification ability through the enhancement of enzymatic and nonenzymatic prevention substances. The observed elevations in GSH levels and GST activities were relatively higher than those in SOD activities, indicating that GSH and GST contributed more in eliminating toxic effects than SOD. Low concentrations of NPs (0.05-0.2 mg/l) enhanced cell growth and decreased GST activity in algal cells of M. aeruginosa, suggesting that NPs may have acted as a protecting factor, such as an antioxidant. The larger portion of the NPs (> 60%) disappeared after 12 days of incubation, indicating the strong ability of M. aeruginosa to degrade the moderate persistent NP compounds. The sorption ratio of M. aeruginosa after a 12-day exposure to low nominal concentrations of NPs (0.02-0.5 mg/l) was relatively high (> 30%). The fact that M. aeruginosa effectively resisted the toxic effects of NPs and strongly degraded these pollutants indicate that M. aeruginosa cells have a strong ability to adapt to variations in environmental conditions and that low and moderate concentrations of organic compounds may favor its survival. Further studies are needed to provide detailed information on the fate of persistent organic pollutants and the survival of algae and to determine the possible role of organic pollutants in the occurrence of water blooms in eutrophic lakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexachlorobenzene (HCB)-induced oxidative damages have been published in rats while the effects have not yet been reported in fishes. Juvenile common carps (Cyprinus carpio) were exposed to waterborne HCB from 2 to 200 mu g l(-1) for 5, 10 or 20 days. Liver and brain were analyzed for various parameters of oxidative stress. There were no significant changes of glutathione (GSH) content and superoxide dismutase (SOD) activity in liver after 5 or 10 days exposure, whereas obvious drops were observed at higher concentrations after 20 days exposure. Significant decreases of GSH content and SOD activity in brain were found during all the exposure days. In brain, HCB also significantly elevated the contents of reactive oxygen species (ROS), thiobarbituric acid-reactive substances (TBARS, as an indicator of lipid peroxidation products), glutathione disulfide (GSSG), and activities of nitric oxide synthase (NOS), glutathione peroxidase (GPx), and glutathione reductase (GR), and inhibited activities of acetylcholinesterase (AchE) and glutathione S-transferase (GST). The results clearly demonstrated that environmentally possible level of HCB could result in oxidative stress in fish and brain was a sensitive target organ of HCB toxicity. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcystins are cyclic heptapeptide hepatoxins produced by many species of cyanobacteria. The toxic effects and mechanism of microcystins on animals have been well studied both in vivo and in vitro. It was also reported that microcystins had adverse effects on plants. However, to our knowledge, there is no information about the toxic effects and mechanism of microcystins on plant suspension cells. In this study, Arabidopsis thaliana suspension cells were exposed to a range dose of microcystin-RR. Lipid peroxidation, a main manifestation of oxidative damage, was studied and a time- and dose-dependent increase in malondiadehyde was observed. In contrast, glutathione (GSH) levels in the cells decreased after 48 h treatment with 1 and 5 mg/L of microcystin-RR. The activities of superoxide dismutase (SOD) and catalase (CAT) increased significantly after 48 h exposure to I and 5 mg/L of microcystin-RR, but glutathione S-transferase (GST) activity showed no difference compared with the control. These results clearly indicate that microcystin-RR is able to cause oxidative damage in A. thaliana suspension cells. Decrease of GSH content and increases of SOD and CAT activities reveal that the antioxidant system may play an important role in eliminating or alleviating the toxicity of microcystin-RR. The possible toxicity mechanism of microcystin-RR on the A. thaliana suspension cells is also discussed in this paper. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcystins are cyclic heptapeptide hepatoxins produced by cyanobacteria. It has been shown that microcystins have adverse effects on animals and on plants as well. Previous researches also indicated that microcystins were capable of inducing oxidative damage in animals both in vivo and in vitro. In this study, tobacco BY-2 suspension cell line was applied to examine the effects of microcystin-RR on plant cells. Cell viability and five biochemical parameters including reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPX) and peroxide dismutase (POD) were investigated when cells were exposed to 50 mg/L microcystin-RR. Results showed that microcystin-RR evoked decline of the cell viability to approximately 80% after treating for 144 h. ROS levels, POD and GPX activities of the treated cells were gradually increased with a time dependent manner. Changes of SOD and CAT activities were also detected in BY-2 cells. After 168 h recovery, ROS contents, POD, GPX and CAT activities returned to normal levels. These results suggest that the microcystin-RR can cause the increase of ROS contents in plant cells and these changes led to oxidant stress, at the same time, the plant cells would improve their antioxidant abilities to combat mirocystin-RR induced oxidative injury. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcystins, one type of the cyanobacterial toxins, show a broad range of hazardous effects on other organisms. Most of the researches on the toxic effects of microcystins have involved in animals and higher plants. Little work, however, has been done on evaluating the mechanisms of microcystin toxicity on algae. In this study, the toxicological effects of microcystin-RR (MC-RR) on the cyanobacterium Synechococcus elongatus were investigated. For this purpose, six physio-biochemical parameters (cell optical density, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST)) were tested in algal cells when exposed to 100 mug(-1) microcystin-RR. The results showed that the growth of Synechococcus elongatus ( expressed as optical density) was significantly inhibited compared with the control. At the same time, the treated algae exhibited a pronounced increase in production of ROS and MDA after 6 days exposure to microcystin-RR. Signi. cant changes in GSH levels and GSH-Px, GSH activities were also detected in algal cells, with higher values being observed in the toxin treated algae after 6 days exposure. GST activities in the treated algae exhibited a decline after exposure and rapid augmentation on day 3, thereafter, they kept at a high level when compared to the control group. GSH contents and GSH-Px activities were also significantly raised in the toxin-treated algae cells from day 3, but they showed a sharp decrease on day 4, which was the onward of cell proliferation. These results suggested that oxidative stress manifested by elevated ROS levels and MDA contents might be responsible for the toxicity of microcystin to Synechococcus elongatus and the algal cells could improve their antioxidant ability through the enhancement of enzymatic and non-enzymatic preventive substances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was found that reactive oxygen species in Anabaena cells increased under simulated microgravity provided by clinostat. Activities of intracellular antioxidant enzymes, such as superoxide dismutase, catalase were higher than those in the controlled samples during the 7 days' experiment. However, the contents of gluathione, an intracellular antioxidant, decreased in comparison with the controlled samples. The results suggested that microgravity provided by clinostat might break the oxidative/antioxidative balance. It indicated a protective mechanism in algal cells, that the total antioxidant system activity increased, which might play an important role for algal cells to adapt the environmental stress of microgravity. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The freshwater, bloom-forming cyanobacterium (blue-green alga) Microcystis aeruginosa produces a peptide hepatotoxin, which causes the damage of animal liver. Recently, toxic Microcystis blooms frequently occur in the eutrophic Dianchi Lake (300 km(2) and located in the South-Westem of China). Microcystin-LR from Microcystis in Dianchi was isolated and purified by high performance liquid chromatography (HPLC) and its toxicity to mouse and fish liver was studied (Li et al., 2001). In this study, six biochemical parameters (reactive oxygen species, glutathione, superoxide dismutase, catalase, glutathione peroxide and glutathione S-transferase) were determined in common carp hepatocytes when the cells were exposed to 10 mug microcystin-LR per litre. The results showed that reactive oxygen species (ROS) contents increased by more than one-time compared with the control after 6 h exposure to the toxin. In contrast, glutathione (GSH) levels in the hepatocytes exposed to microcystin-LR decreased by 47% compared with the control. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxide (GSH-Px) increased significantly after 6 h exposure to microcystin-LR, but glutathione S-transferase (GST) activity showed no difference from the control. These results suggested that the toxicity of microcystin-LR caused the increase of ROS contents and the depletion of GSH in hepatocytes exposed to the toxin and these changes led to oxidant shock in hepatocytes. Increases of SOD, CAT and GSH-Px activities revealed that these three kinds of antioxidant enzymes might play important roles in eliminating the excessive ROS. This paper also examined the possible toxicity mechanism of microcystin-LR on the fish hepatocytes and the results were similar to those with mouse hepatocytes. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the protective effects of different doses and administration modes of N-acetylcysteine (NAC) against X-ray-induced liver damage in mice. Kun-Ming mice were divided into four groups, each composed of six animals: two control groups and two NAC-treated groups. An acute study was carried out to determine alterations in lipid peroxidation (determined by measuring malondiadehyde (MDA) level), glutathione (GSH) content and superoxide dismutase (SOD) activity (assayed by colorimetric method), and DNA damage (characterized by DNA-single strand break using with comet assay) as well as cell apoptosis (measured by flow cytometry) at 12 h after irradiation. The results showed that there were dose-related decreases in MDA level, DNA damage and cell apoptosis, and dose-dependent increases in GSH content and SOD activity in all NAC-treated groups compared to control groups, indicating that pre-treatment or post-treatment with NAC significantly attenuates the acute liver damage caused by X-ray. In addition, significant positive correlations were observed between MDA level and DNA damage or cell apoptosis, implying that lipid peroxidation plays a major role in X-ray-induced liver injury. The data suggest that NAC exerts its radioprotective effect by counteracting accumulated reactive oxygen species in the liver through its properties as a direct antioxidant and a GSH precursor, when administered before or after X-ray irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen is reduced to H2O2 at the electrode surface, and the H2O2 generated in situ oxidizes Fe-II to Fe-III, and then electrochemical reduction of Fe-III therefore gives rise to a catalytic current. In the presence of antioxidants, H2O2 was scavenged, the catalytic current was reduced, and the decreased current signal was proportional to the quantity of existing antioxidants. A kinetic model was proposed to quantify the H2O2 scavenging capacities of the antioxidants. With the use of the sensor developed here, antioxidant measurements can be done quite simply: put the sensor into the sample solutions (in aerobic atmosphere), perform a cathodic polarization scan, and then read the antioxidant activity values. The present work can be complementary to the previous studies of antioxidant sensor techniques based on OH radicals and superoxide ions scavenging methods, but the sensor developed here is much easier to fabricate and use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrahigh pressure technique was employed to extract ginsenosides from roots of ginseng (Panax ginseng C.A. Meyer). The optimal conditions for ultrahigh pressure extraction (UPE) of total ginsenosides were quantified by UV-vis spectrophotometry with the ginsenoside Re as standard, the signal ginsenosides were quantified by HPLC and ELSD with ginsenosides Re, Rg(1), Rb-1, Rc and Rb-2 as standards. Orthogonal design was applied to evaluate the effects of four independent factors (extraction pressure, extraction temperature, extraction time and ethanol concentration) on the yield and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of ginsenoside, which are based on microwave extraction (ME), ultrasound extraction (UE), soxhlet extraction (SE) and heat reflux extraction (HRE) method. The results showed that UPE method can produce ginsenoside with the highest yield and the best radical scavenging activity compared to other used ones. Scanning electron microscopic (SEM) images of the plant cells after ultrahigh pressure treatment was obtained to provide visual evidence of the disruption effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principal components, isoflavonoids and astragalosides, in the extract of Radix Astragali were detected by a high-performance liquid chromatography Couple to electrospray ionization ion trap multiple-stage tandem mass spectrometry (HPLC-ESI-IT-MSn) method. By comparing the retention time (t(R)) of HPLC, the ESI-MSn data and the structures of analyzed Compounds with the data of reference compounds and in the literature, 17 isoflavonoids and 12 astragalosides have been identified or tentatively deduced. By Virtue of the extracted ion chromatogram (EIC) mode, simultaneous determination of isoflavonoids and astragalosides could be achieved when the different components formed overlapped peaks. And this method has been utilized to analyze the constituents in extracts of Radix Astragali from Helong City and of different growth years. Then the antioxidant activity of different samples has been Successfully investigated by HPLC-ESI-MS method in multiple selected ion monitoring(MIM) mode, applying the spin trapping technology, and the Ferric Reducing Antioxidant Power (FRAP) assay was applied to support the result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following intraperitoneal injection of lanthanum and terbium chloride and their complexes of diethyltriaminopentagacetic acid (DTPA) to adult mice with a dose of 0.28 mmol/kg body weight/day for three days. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the content of lipid end product, malonaldehyde (MDA) in the mice livers have been assayed respectively. The results show that the activity of SOD was increased and the content of MDA was reduced for LaCl3 treated mice and the two targets were not changed for TbCl3, but the activity of GSH-Px was reduced markedly for both LaCl3 and TbCl3 while the above three targets were not changed for La-DTPA and Tb-DTPA complexes.