991 resultados para Table tennis performance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amount of energy that organisms can allocate to self-maintenance and/or reproduction largely depends on their foraging strategies. Because of corticosterone (CORT) involvement in the control of energy metabolism, food intake and locomotor activity, recent studies have sought to demonstrate the role of this hormone in foraging decisions and performance. Moreover, considerable recent advances in animal-attached loggers now allow the study of behaviour in free-living animals. In order to assess the effects of CORT administration on the foraging behaviour of free-living Adelie Penguins Pygoscelis adeliae, we studied a group with CORT implants and a control group without CORT implants, by attaching time-depth recorders to the two groups and monitoring them throughout up to seven consecutive foraging trips during the guard stage (in Adelie Land, Antarctica). We found that foraging trips duration was similar between both groups. Dive durations, time spent at the bottom phase of dives, and the number of undulations per dive of CORT-implanted birds were all significantly higher than those of controls. However, CORT-implanted birds performed fewer dives overall (ca. 4,400) than controls (ca. 6,250) and spent many (13 and 6 times for penguins #3 and #4, respectively) long periods (>3 h) without diving. The low foraging effort and long resting periods support the view that CORT-implanted birds probably gained less energy than did the control birds. CORT treatment appears then to result in redirecting bird behaviour from costly activity (i.e. reproduction) to a behaviour promoting the preservation of energy reserves. Future studies are therefore needed to assess body condition and reproductive success of CORT-manipulated birds in parallel with the recording of their diving performances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied how environmental conditions affect reproduction in sympatric skua species that differ in their reliance on marine resources: the exclusively marine foraging south polar skua Catharacta maccormicki, the terrestrially foraging brown skua C. antarctica lonnbergi and mixed species pairs with an intermediate diet. Egg size, clutch asymmetry and hatching dates varied between species and years without consistent patterns. In the south polar skuas, 12 to 38% of the variation in these parameters was explained by sea surface temperature, sea ice cover and local weather. In mixed species pairs and brown skuas, the influence of environmental factors on variation in clutch asymmetry and hatching date decreased to 10-29%, and no effect on egg size was found. Annual variation in offspring growth performance also differed between species with variable growth in chicks of south polar skuas and mixed species pairs, and almost uniform growth in brown skuas. Additionally, the dependency on oceanographic and climatic factors, especially local wind conditions, decreased from south polar skuas to brown skua chicks. Consistent in all species, offspring were more sensitive to environmental conditions during early stages; during the late chick stage (>33 d) chick growth was almost independent of environmental conditions. The net breeding success could not be predicted by any environmental factor in any skua species, suggesting it may not be a sensitive indicator of environmental conditions. Hence, the sensitivity of skuas to environmental conditions varied between species, with south polar skuas being more sensitive than brown skuas, and between breeding periods, with the egg parameters being more susceptible to oceanographic conditions. However, during offspring development, local climatic conditions became more important. We conclude that future climate change in the Maritime Antarctic will affect reproduction of skuas more strongly through changes in sea ice cover and sea surface temperature (and the resulting alterations to the marine food web) than through local weather conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Aims: Anthropogenic depletion of stratospheric ozone in Arctic latitudes has resulted in an increase of ultraviolet-B radiation (UV-B) reaching the biosphere. UV-B exposure is known to reduce aboveground biomass and plant height, to increase DNA damage and cause accumulation of UV-absorbing compounds in polar plants. However, many studies on Arctic mosses tended to be inconclusive. The importance of different water availability in influencing UV-B impacts on lower plants in the Arctic has been poorly explored and might partially explain the observed wide variation of responses, given the importance of water in controlling bryophyte physiology. This study aimed to assess the long-term responses of three common sub-Arctic bryophytes to enhanced UV-B radiation (+UV-B) and to elucidate the influence of water supply on those responses. Results: Responses were species specific: H. splendens responded most to +UV-B, with reduction in both annual growth (-22%) and sporophyte production (-44%), together with increased b-carotene, violaxanthin, total chlorophyll and NPQ, and decreased zeaxanthin and de-epoxidation of the xanthophyll cycle pool (DES). Barbilophozia lycopodioides responded less to +UV-B, showing increased b-carotene and sclerophylly and decreased UV-absorbing compounds. Polytrichum commune only showed small morphogenetic changes. No effect of UV-B on bryophyte cover was observed. Water availability had profound effects on bryophyte ecophysiology, and plants showed, in general, lower growth and ETR, together with a higher photoprotection in the drier site. Water availability also influenced bryophyte responses to +UV-B and, in particular, responses were less detectable in the drier site. Conclusions: Impacts of UV-B exposure on Arctic bryophytes were significant, in contrast to modest or absent UV-B effects measured in previous studies. The impacts were more easily detectable in species with high plasticity such as H. splendens and less obvious, or more subtle, under drier conditions. Species biology and water supply greatly influences the impact of UV-B on at least some Arctic bryophytes and could contribute to the wide variation of responses observed previously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The algorithms designed to estimate snow water equivalent (SWE) using passive microwave measurements falter in lake-rich high-latitude environments due to the emission properties of ice covered lakes on low frequency measurements. Microwave emission models have been used to simulate brightness temperatures (Tbs) for snowpack characteristics in terrestrial environments but cannot be applied to snow on lakes because of the differing subsurface emissivities and scattering matrices present in ice. This paper examines the performance of a modified version of the Helsinki University of Technology (HUT) snow emission model that incorporates microwave emission from lake ice and sub-ice water. Inputs to the HUT model include measurements collected over brackish and freshwater lakes north of Inuvik, Northwest Territories, Canada in April 2008, consisting of snowpack (depth, density, and snow water equivalent) and lake ice (thickness and ice type). Coincident airborne radiometer measurements at a resolution of 80x100 m were used as ground-truth to evaluate the simulations. The results indicate that subsurface media are simulated best when utilizing a modeled effective grain size and a 1 mm RMS surface roughness at the ice/water interface compared to using measured grain size and a flat Fresnel reflective surface as input. Simulations at 37 GHz (vertical polarization) produce the best results compared to airborne Tbs, with a Root Mean Square Error (RMSE) of 6.2 K and 7.9 K, as well as Mean Bias Errors (MBEs) of -8.4 K and -8.8 K for brackish and freshwater sites respectively. Freshwater simulations at 6.9 and 19 GHz H exhibited low RMSE (10.53 and 6.15 K respectively) and MBE (-5.37 and 8.36 K respectively) but did not accurately simulate Tb variability (R= -0.15 and 0.01 respectively). Over brackish water, 6.9 GHz simulations had poor agreement with airborne Tbs, while 19 GHz V exhibited a low RMSE (6.15 K), MBE (-4.52 K) and improved relative agreement to airborne measurements (R = 0.47). Salinity considerations reduced 6.9 GHz errors substantially, with a drop in RMSE from 51.48 K and 57.18 K for H and V polarizations respectively, to 26.2 K and 31.6 K, although Tb variability was not well simulated. With best results at 37 GHz, HUT simulations exhibit the potential to track Tb evolution, and therefore SWE through the winter season.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid potentiometric method for measuring ionic and total fluorine concentrations in sea water with aid of a fluorine-selective electrode is described and corresponding measurements in the 0-2000 m layer of the western Sargasso Sea and in the Gulf Stream are given. Preparation of samples and performance of measurements are described.