360 resultados para RHIPICEPHALUS (BOOPHILUS) MICROPLUS
Resumo:
Tick fever is an important disease of cattle where Rhipicephalus (Boophilus) microplus acts as a vector for the three causal organisms Babesia bovis, Babesia bigemina and Anaplasma marginale. Bos indicus cattle and their crosses are more resistant to the clinical effects of infection with B. bovis and B. bigemina than are Bos taurus cattle. Resistance is not complete, however, and herds of B. indicus-cross cattle are still at risk of babesiosis in environments where exposure to B. bovis is light in most years but occasionally high. The susceptibility of B. indicus cattle and their crosses to infection with A. marginale is similar to that of B. taurus cattle. In herds of B. indicus cattle and their crosses the infection rate of Babesia spp. and A. marginale is lowered because fewer ticks are likely to attach per day due to reduced numbers of ticks in the field (long-term effect on population, arising from high host resistance) and because a smaller proportion of ticks that do develop to feed on infected cattle will in turn be infected (due to lower parasitaemia). As a consequence, herds of B. indicus cattle are less likely than herds of B. taurus cattle to have high levels of population immunity to babesiosis or anaplasmosis. The effects of acaricide application on the probability of clinical disease due to anaplasmosis and babesiosis are unpredictable and dependent on the prevalence of infection in ticks and in cattle at the time of application. Attempting to manipulate population immunity through the toleration of specific threshold numbers of ticks with the aim of controlling tick fever is not reliable and the justification for acaricide application should be for the control of ticks rather than for tick fever. Vaccination of B. indicus cattle and their crosses is advisable in all areas where ticks exist, although vaccination against B. bigemina is probably not essential in pure B. indicus animals.
Resumo:
It is widely acknowledged that changes in intracellular calcium ion (Ca2+) concentration provide dynamic signals that control a plethora of cellular processes, including triggering and mediating host defence mechanisms. In this study, quantitative real-time PCR was used to analyse gene expression of 14 Ca2+ signalling proteins in skin obtained from high tick-resistant (HR) and low tick-resistant (LR) cattle following artificial challenge with cattle tick (Rhipicephalus (Boophilus) microplus). Up-regulation of numerous genes was observed in both HR and LR skin following tick challenge, however substantially higher transcription activation was found in HR tissue. The elevated expression in HR skin of specific Ca2+ signalling genes such as AHNAK, CASQ, IL2, NFAT2CIP and PLCG1 may be related to host resistance. Our data suggest that Ca2+ and its associated proteins might play an important role in host response to ticks and that further investigation is warranted.
Resumo:
No Brasil, casos de resistência do carrapato-do-boi [Rhipicephalus (Boophilus) microplus] aos acaricidas organofosforados têm sido relatados a partir do início dos anos de 1970 e, aos piretróides, no fi nal dos anos de 1980. Desde então, as reclamações de produtores quanto a esse problema vêm se avolumando em todas as regiões pecuárias. Por isso, torna-se importante conhecer bem a real situação de sua resistência e caracterizar adequadamente seu controle a fi m de torná-lo mais efi ciente e reduzir seu custo. Este estudo objetivou avaliar a suscetibilidade de populações de R. (B.) microplus em relação a acaricidas de distintas classes e caracterizar seu controle no Estado de Mato Grosso do Sul. Para tanto, foram realizados bioensaios toxicológicos com carrapatos obtidos em bovinos de propriedades de gado de corte e de leite em onze das principais regiões produtivas do Estado: Três Lagoas, Dourados, Alto Taquari, Iguatemi, Baixo Pantanal, Campo Grande, Bodoquena, Paranaíba, Aquidauana, Nova Andradina e Cassilândia. A escolha das propriedades amostradas priorizou aquelas com histórico de problemas críticos no controle químico dos carrapatos, mas, na ausência deles em condições de realizar os testes com tal precedente histórico, as fazendas foram escolhidas por consulta conforme a disponibilidade de carrapatos. Nos testes de suscetibilidade foi utilizada a técnica de imersão de teleóginas (cinco minutos), com posterior avaliação de parâmetros biológicos. Na imersão foram utilizados doze acaricidas comerciais (totalizando sete princípios ativos pertencentes a quatro classes distintas): amitraz; diazinon; cipermetrina; clorpirifós + cipermetrina + citronelal; diclorvós (DDVP) + clorfenvinfós; cimiazole + cipermetrina; etion + cipermetrina; DDVP + clorpirifós; clorpirifós + cipermetrina; cipermetrina + clorpirifós + butóxido de piperonila + citronelal e cipermetrina + clorfenvinfós. Após a imersão (lotes de no mínimo 10 teleóginas por produto), as teleóginas foram secas e mantidas em câmara climatizada por 30 dias para a avaliação de parâmetros reprodutivos, tais como: peso da postura (no 16o dia), taxa de eclosão e efi ciência reprodutiva (no 40o dia). Foram considerados eficazes os produtos cuja efi cácia foi igual ou superior a 95%, critério este estabelecido pelo Ministério da Agricultura, Pecuária e Abastecimento (Mapa) para o registro de novos produtos. Em todas as propriedades foi verificada resistência a pelo menos um produto carrapaticida, havendo diversas propriedades com resistência de até 100% a um ou mais princípios ativos. Constatou-se que a efi cácia dos produtos piretróides nas populações amostradas foi, em geral, inferior a 70%, não sendo recomendado seu uso nas propriedades visitadas. Dentre os doze produtos avaliados, apenas dois produtos, DDVP 60% + clorfenvinfós 20% (97,68%) e Cipermetrina 15% + clorpirifós 25% + butóxido de piperonila 15% + citronelal 1% (100%), apresentaram efi cácia média superior a 95% e devem controlar satisfatoriamente as infestações pelo carrapato em condições de campo. Paralelamente, observou-se que os pecuaristas utilizam, também, produtos não autorizados ou sem registro ofi cial e efetuam diferentes combinações de produtos a seu dispor, incluindo produtos caseiros ou específi cos para uso agrícola, em função da ausência de um programa nacional de controle do carrapato bovino.
Resumo:
Ticks are blood feeding parasites transmitting a wide variety of pathogens to their vertebrate hosts. The vector competence of ticks is tightly linked with their immune system. Despite its importance, our knowledge of tick innate immunity is still inadequate and the limited number of sufficiently characterized immune molecules and cellular reactions are dispersed across numerous tick species. The phagocytosis of microbes by tick hemocytes seems to be coupled with a primitive complement-like system, which possibly involves self/nonself recognition by fibrinogen-related lectins and the action of thioester-containing proteins. Ticks do not seem to possess a pro-phenoloxidase system leading to melanization and also coagulation of tick hemolymph has not been experimentally proven. They are capable of defending themselves against microbial infection with a variety of antimicrobial peptides comprising lysozymes, defensins and molecules not found in other invertebrates. Virtually nothing is known about the signaling cascades involved in the regulation of tick antimicrobial immune responses. Midgut immunity is apparently the decisive factor of tick vector competence. The gut content is a hostile environment for ingested microbes, which is mainly due to the antimicrobial activity of hemoglobin fragments generated by the digestion of the host blood as well as other antimicrobial peptides. Reactive oxygen species possibly also play an important role in the tick-pathogen interaction. The recent release of the Ixodes scapularis genome and the feasibility of RNA interference in ticks promise imminent and substantial progress in tick innate immunity research.
Resumo:
The present work aimed to evaluate the endectocide activity of a new injectable long-action formulation, containing ivermectin (IVM) and abamectin (ABA). In each one of the four experiments performed, the following groups were formed: group I: 2.25% IVM (450 mu g/kg) + 1.25% ABA (250 mu g/kg), group II: 3.15% IVM (630 mu g/kg) and group III: control. Eighteen bovine naturally infected by gastrointestinal nematoda were selected for anthelmintic evaluation and necropsied on posttreatment day (PTD) 14 to estimate the total parasitic burden. For the Rhipicephalus (Boophilus) microplus field trial, 30 bovine were selected by means of counts of semi-engorged R. (B.) microplus and the therapeutic and residual efficacy evaluated by tick counts on PTDs 1, 3, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84 and 91. In the stall test, 15 calves were artificially infested with 5000 R. (B.) microplus (Mozzo strain) larvae three times a week and daily collections of all the engorged female ticks detached from each calf were performed until the PTD 80. Forty bovine naturally infected with Dermatobia hominis larvae were selected and the number of larvae was counted by visual and tactile inspection on PTDs 3, 7, 14, 28, 35, 49, 63, 77, 91 and 105. In this trial, a formulation containing 1% doramectin (200 mu g/kg) was also used. IVM + ABA formulation and 3.15% IVM eliminated four of the eight species of nematode identified. The anthelmintic efficacy of the avermectins association against Haemonchus placei, Cooperia spatulata and C. punctata was 89.64%, 98.84% and 97.69%, while 3.15% IVM achieved 30.98%, 84.79% and 75.56%, respectively. The two formulations evaluated showed reduced acaricide action on the PTD I and 3, reaching high efficacy percentages from PTD 14 onward. The IVM + ABA showed efficacy above 95% in the period between PTDs 21 and 49. In the stall test, it observed no difference (P > 0.05) between the two formulations regarding the R. (B.) microplus counts during the entire evaluation period. IVM + ABA reduced the number of ticks from the PTD 1 to 77 (P < 0.05) and 3.15% IVM reduced (P < 0.05) the tick number from PTD 4 up to PTD 80. The three endectocides showed no difference (P > 0.05) regarding the number of D. hominis larvae and prevented this parasite reestablishment until PTD 105. These results indicate that the IVM + ABA association showed higher anthelmintic activity and similar efficacy against arthropods to the formulation containing 3.15% IVM. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The resistance to infestations by ectoparasites and infections by gastrointestinal nematodes was studied in 45 animals (males and females) of two genetic groups: purebred Nelore (NI, n=28) and Three-Cross (1/2 Angus+1/4 Canchim+1/4 Nelore - TC, n=17). The animals were monitored for 24months, during which they were left to graze in tropical pastures without receiving treatment for parasites. Each month the animals were examined for infestations by external parasites, to count the numbers of cattle ticks Rhipicephalus microplus with diameter greater than 4.5mm present on the left side, horn flies (Haematobia irritans) present in the lumbar region and botfly larvae (Dermatobia hominis) present on the entire body. The H. irritans counts were performed with the aid of digital photographs. At the time of examination, fecal samples were collected to count the eggs per gram (EPG) and to perform coprocultures, and peripheral blood samples were drawn to determine the packed cell volume (PCV) and to count the eosinophils. For statistical analysis, the count data were transformed into log10 (n+1), where n is the number of parasites. For PCV, significant effects (P<0.05) were found for collection month (CO), genetic group (GG) and gender (SX), with means and respective standard errors of 41.5±0.65% for the NI animals, 39.3±0.83% for the TC, 41.5±0.72% for the females and 39.3±0.77% for the males. Regarding the eosinophil counts, only the effect of sex was significant (P<0.01), with means and respective standard errors of 926.0±46.2/μL, for males and 1088.0±43.8/μL of blood, for females. The NI animals presented lower mean counts for all the external parasites compared to the TC animals (P<0.01). For ticks, the transformed means followed by standard errors for the NI and TC animals were 0.06±0.01 and 0.34±0.02, while for horn flies these were 0.92±0.05 and 1.36±0.06 and for botfly larvae they were 0.05±0.03 and 0.45±0.05, respectively. The average EPG values were only influenced by CO (P<0.01). The coprocultures revealed the presence of the following endoparasites: Haemonchus spp., Cooperia spp., Oesophagostomum spp. and Trichostrongylus spp., the last in smaller proportion. There were no significant differences between the genetic groups for the endoparasite loads, except for Cooperia spp., which were present in greater number (P<0.05) in the NI group. The results obtained in this experiment confirm previous findings of greater susceptibility of the Nelore breed to Cooperia spp. and high resistance to ectoparasites. © 2013 Elsevier B.V.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV