1000 resultados para Potamogeton crispus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compared to terrestrial environments, grazing intensity on belowground plant parts may be particularly strong in aquatic environments, which may have great effects on plant-community structure. We observed that the submerged macrophyte, Potamogeton pectinatus, which mainly reproduces with tubers, often grows at intermediate water depth and that P. perfoliatus, which mainly reproduces with rhizomes and turions, grows in either shallow or deep water. One mechanism behind this distributional pattern may be that swans prefer to feed on P. pectinatus tubers at intermediate water depths. We hypothesised that when swans feed on tubers in the sediment, P. perfoliatus rhizomes and turions may be damaged by the uprooting, whereas the small round tubers of P. pectinatus that escaped herbivory may be more tolerant to this bioturbation. In spring 2000, we transplanted P. perfoliatus rhizomes into a P. pectinatus stand and followed growth in plots protected and unprotected, respectively, from bird foraging. Although swan foraging reduced tuber biomass in unprotected plots, leading to lower P. pectinatus density in spring 2001, this species grew well both in protected and unprotected plots later that summer. In contrast, swan grazing had a dramatic negative effect on P. perfoliatus that persisted throughout the summer of 2001, with close to no plants in the unprotected plots and high densities in the protected plots. Our results demonstrate that herbivorous waterbirds may play a crucial role in the distribution and prevalence of specific plant species. Furthermore, since their grazing benefitted their preferred food source, the interaction between swans and P. pectinatus may be classified as ecologically mutualistic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of aquatic macrophytes in stimulating biodiversity and maintaining clear waters is currently undisputed. The management of (eutrophic) shallow waters is therefore often directed at (re-)establishing macrophyte domination. In contrast, the role of water birds has long been considered of minor importance for the functioning of fresh water ecosystems. Indeed, in terms of biomass and production, water birds constitute only a minor part of these systems. However, water birds may graze heavily on water plants under certain circumstances, and the question arises whether herbivorous water birds have an important indirect effect on shallow fresh water systems. Mainly illustrated with the interaction between Bewick’s Swans and Fennel Pondweed, we present data on the role that water plants may play in the life of water birds and how water birds may impact water plants’ fitness in terms of survival, production, dispersal and competitive ability. It appears that water plants may be crucial for water birds during periods of high-energy requirements, such as migration. Despite the plants’ costs associated with water bird grazing, the interaction between water birds and water plants varies in nature from an apparent predator–prey relationship to a mutually beneficial interaction depending on the context and the perspective. For the case of the Bewick’s Swan–Fennel Pondweed interaction, regular bird grazing is sustainable and may actually favour the plant’s dispersal. Thus, Bewick’s Swans themselves may in fact play a crucial role in establishing and maintaining the Fennel Pondweed rich staging sites between the swans’ wintering and breeding grounds, which are vital for the swans’ successful migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wetlands are among the most important ecosystems on Earth both in terms of productivity and biodiversity, but also as a source of the greenhouse gas CH4. Microbial processes catalyzing nutrient recycling and CH4 production are controlled by sediment physico-chemistry, which is in turn affected by plant activity and the foraging behaviour of herbivores. We performed field and laboratory experiments to evaluate the direct effect of herbivores on soil microbial activity and their indirect effects as the consequence of reduced macrophyte density, using migratory Bewick’s swans (Cygnus columbianus bewickii Yarrell) feeding on fennel pondweed (Potamogeton pectinatus L.) tubers as a model system. A controlled foraging experiment using field enclosures indicated that swan bioturbation decreases CH4 production, through a decrease in the activity of methanogenic Archaea and an increased rate of CH4 oxidation in the bioturbated sediment. We also found a positive correlation between tuber density (a surrogate of plant density during the previous growth season) and CH4 production activity. A laboratory experiment showed that sediment sterilization enhances pondweed growth, probably due to elimination of the negative effects of microbial activity on plant growth. In summary, the bioturbation caused by swan grazing modulates CH4 cycling by means of both direct and indirect (i.e. plant-mediated) effects with potential consequences for CH4 emission from wetland systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The daily metabolizable energy intake of an animal is potentially limited by either the available feeding time or by its capacity to process energy. Animals are generally considered not to be time-limited but rather to be energy-processing-limited. This is concluded from the common observation that an animal's feeding time per day increases with a decrease in food density. We argue that such changes in feeding time are in theory also expected when no constraints are operating. Thus, a study of the constraints on energy intakes of free-living animals should be performed during demanding phases of the year. As an example, we collected data on time and energy budgets of Bewick's swan (Cygnus columbianus bewickii) refuelling during migration on fennel pondweed (Potamogeton pectinatus) tubers in two years differing two-fold in tuber biomass density. As predicted by time limitation, the feeding time (defined as the time with the head submerged) did not change in response to a change in food biomass density, both within and between years (averaging 12.2 h d−1). Contrary to energy-processing limitation, and again in line with time limitation, the daily metabolizable energy intake varied, being greater in the year with high than in the year with low food densities. We conclude that more studies are needed of animals operating under demanding conditions before it can be assessed whether free-living animals are generally energy-processing- or time-limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deeper burial of bulbs and tubers has been suggested as an escape against below-ground herbivory by vertebrates, but experimental evidence is lacking. As deep propagule burial can incur high costs of emergence after dormancy, burial depth may represent a trade-off between sprouting survival and herbivore avoidance. We tested whether burial depth of subterraneous tubers is a flexible trait in fennel pondweed (Potamogeton pectinatus), facing tuber predation by Bewick's swans (Cygnus columbianus bewickii) in shallow lakes in winter. In a four-year experiment involving eight exclosures, winter herbivory by swans and all vertebrate summer herbivory were excluded in a full-factorial design; we hence controlled for aboveground vertebrate herbivory in summer, possibly influencing tuber depth. Tuber depth was measured each September before swan arrival and each March before tuber sprouting. In accordance with our hypothesis, tuber depth in September decreased after excluding Bewick's swans in comparison to control plots. The summer exclosure showed an increase in tuber biomass and the number of shallow tubers, but not a significant effect on the mean burial depth of tuber mass. Our results suggest that a clonal plant like P. pectinatus can tune the tuber burial depth to predation pressure, either by phenotypic plasticity or genotype sorting, hence exhibiting flexible avoidance by escape. We suggest that a flexible propagule burial depth can be an effective herbivore avoidance strategy, which might be more widespread among tuber forming plant species than previously thought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In clonal plants, vegetative parts may outcompete seeds in the absence of disturbance, limiting the build-up of genotypic diversity through repeated seedling recruitment (RSR). Herbivory may provide disturbance and trigger establishment of strong colonizers (seeds) at the expense of strong competitors (clonal propagules). In the clonal aquatic fennel pondweed Potamogeton pectinatus, two distinct herbivore guilds may modify the dynamics of propagation. In winter, Bewick's swans may deplete patches of tubers, promoting seedling establishment in spring. In summer, seed consumption by waterfowl can reduce the density of viable seeds but grazing may also reduce tuber production and hence facilitate seedling establishment. This study is among the first to experimentally test herbivore impact on plant genotypic diversity. We assess the separate and combined effects of both herbivore guilds on genotypic diversity and structure of fennel pondweed beds. Using microsatellites, we genotyped P. pectinatus from an exclosure experiment and assessed the contribution of herbivory, dispersal and sexual reproduction to the population genetic structure. Despite the predominance of clonal propagation in P. pectinatus, we found considerable genotypic diversity. Within the experimental blocks, kinship among genets decreased with geographic distance, clearly identifying a role for RSR in the maintenance of genotypic diversity within the fennel pondweed beds. However, over a period of five years, none of the herbivory treatments affected genotypic diversity. Hence, sexual reproduction on a local scale is important in this putatively clonal plant and possibly sufficient to ensure a relatively high genotypic diversity even in the absence of herbivores. Although we cannot preclude a role of herbivory in shaping genotypic diversity of a clonal plant, after five years of exclusion of the two investigated herbivore guilds no measurable effect on genotypic diversity was detected. © 2014 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review whether migratory Anatidae, i.e., swans, geese and ducks, could be acting as vectors for dispersal of Zostera, Ruppia and Potamogeton propagules by endozoochory (carrying seeds in their guts). We list six prerequisites that must all be fulfilled, if successful dispersal should occur. Several Anatidae species feed on these macrophytes, and undertake rapid long-distance movements, making dispersal possible. We identify four problems, which in combination leads us to conclude that long-distance dispersal events are likely to be rare. (i) Most long-distance movements are out of phase with the reproductive efforts of the plants, and if birds arrive at sites when plants still bear seeds, they are likely to depart well after seed stocks have been depleted. (ii) Seed transport by birds will usually be uni-directional, from north to south on autumn migrations. (iii) Most of the gut contents of migratory birds are likely to have been discarded within 300 km of departure. (iv) In many cases, birds will arrive in habitats seriously different from those they departed, i.e., any seeds carried along will have low chances of surviving in their new site. We suggest that northbound dispersal by endozoochory can only occur during spring if waterbirds feed on seeds that have not been depleted and remained frozen down or buried in sediments, or during moult- or post-moult migrations. Moult migration takes place in summer in phase with the reproductive efforts of the plants. Also epizoochorous dispersal (external attachment) is subject to restrictions i, ii and iv.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some migratory birds refuel at stopover sites that they by-pass on the return trip. In theory, this skipping behaviour is only expected in time-selected migrants when the overflown site is of a lower quality than the departure site. We provide empirical evidence that quality differences in stopover sites are the cause for skipping in Bewick's Swans Cygnus bewickii tracked by satellite telemetry. Two and five complete tracks were recorded in spring and autunm, respectively, showing that the White Sea was visited for c. 2 weeks in spring, but by-passed (or visited for a few days at the most) in autumn. Skipping of the White Sea in autumn was predicted by a dynamic programming model which was based on calculated gain rates during stopover in the Pechora Delta and the White Sea. This prediction was not sensitive to plausible variations in gain rates. Relative to the Pechora Delta the White Sea is a poor site because a large tidal amplitude precludes foraging on the beds of the submerged macrophyte Fennel Pondweed Potamogeton pectinatus during high tide. The dynamic programming model predicted a fast autunm migration. However, the phenology of autunm arrival dates of Bewick's Swans on the wintering grounds revealed that only in three out of ten years a significant number of birds was able to reach the wintering grounds without refuelling. In the other years, unfavourable wind conditions along the Russian/Baltic part of the route prevented such non-stop migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested whether the spatial variation in resource depletion by Tundra Swans (Cygnus columbianus) foraging on belowground tubers of sago pondweed (Potamogeton pectinatus) was caused by differences in net energy intake rates. The variation in giving-up densities within the confines of one lake was nearly eightfold, the giving-up density being positively related to water depth and, to a lesser extent, the silt content of the sediment. The swans' preference (measured as cumulative foraging pressure) was negatively related to these variables. We adjusted a model developed for diving birds to predict changes in the time allocation of foraging swans with changes in power requirements and harvest rate. First, we compared the behavior of free-living swans foraging in shallow and deep water, where they feed by head-dipping and up-ending, respectively. Up-ending swans had 1.3-2.1 times longer feeding times than head-dipping swans. This was contrary to our expectation, since the model predicted a decrease in feeding time with an increase in feeding power. However, up-ending swans also had 1.9 times longer trampling times than headdipping swans. The model predicted a strong positive correlation between trampling time and feeding time, and the longer trampling times may thus have masked any effect of an increase in feeding power. Heart rate measurements showed that trampling was the most energetically costly part of foraging. However, because the feeding time and trampling time changed concurrently, the rate of energy expenditure was only slightly higher in deep water (1.03-1.06 times). This is a conservative estimate since it does not take into account that the feeding costs of up-ending are possibly higher than that of head-dipping. Second, we compared captive swans foraging on sandy and clayey sediments. We found that the harvest rate on clayey sediment was only 0.6 times that on sandy sediment and that the power requirements for foraging were 1.2-1.4 times greater. Our results are in qualitative agreement with the hypothesis that the large spatial variation in giving-up densities was caused by differences in net rates of energy intake. This potentially has important implications for the prey dynamics, because plant regrowth has been shown to be related to the same habitat factors (water depth and sediment type).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. In a system where depletion drives a habitat shift, the hypothesis was tested that animals switch habitat as soon as the average daily net energy intake (or gain) drops below that attainable in the alternative habitat.

2. The study was performed in the Lauwersmeer area. Upon arrival during the autumn migration, Bewick's swans first feed on below-ground tubers of fennel pondweed on the lake, but subsequently switched to feeding on harvest remains in sugar beet fields.

3. The daily energy intake was estimated by multiplying the average time spent foraging per day with the instantaneous energy intake rate while foraging. In the case of pondweed feeding, the latter was estimated from the functional response and the depletion of tuber biomass. In the case of beet feeding, it was estimated from dropping production rate. Gross energy intake was converted to metabolizable energy intake using the assimilation as determined in digestion trials. The daily energy expenditure was estimated by the time-energy budget method. Energetic costs were determined using heart rate.

4. The daily gain of pondweed feeding at the median date of the habitat switch (i.e. when 50% of the swans had switched) was compared with that of beet feeding. The daily gain of beet feeding was calculated for two strategies depending on the night activity on the lake: additional pondweed feeding (mixed feeding) or sleeping (pure beet feeding).

5. The majority of the swans switched when the daily gain they could achieve by staying on the pondweed bed fell just below the average daily gain of pure beet feeders. However, mixed feeders would attain an average daily gain considerably above that of pondweed feeders. A sensitivity analysis showed that this result was robust.

6. We therefore reject the hypothesis that the habitat switch by swans can be explained by simple long-term energy rate maximization. State-dependency, predation risk, and protein requirements are put forward as explanations for the delay in habitat switch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoprotection of the agarophyte red alga Gracilaria tenuistipitata against ultraviolet radiation (UVR) was investigated in algae submitted for 1 week to photosynthetically active radiation (PAR, 260 mu mol photons m(-2) s(-1)) or PAR + UVR (UV-A, 8.13 W m(-2) and UV-B, 0.42 W m(-2)) under different nitrogen concentrations: 0, 0.1, and 0.5 mM of NO3-. Photosynthetic pigments decreased during the time of the experiment mainly under low nitrogen supply and UVR. Incubation under high nitrogen supply (0.5 mM) sustained the photosynthetic levels over time. In contrast, mycosporine-like amino acids (MAAs) increased up to eightfold in the presence of UVR and 0.5 mM NO3-. Under PAR + UVR, maximal quantum yield was positively correlated to MAA abundance, whereas under PAR no correlation was found. The photosynthetic yield of algae cultivated during seven days under PAR + UVR was less affected by a 30-min exposure of high UVR (16 W m(-2)) and fully recovered after transferring to low PAR irradiances, whereas algae kept under PAR were more affected by UV exposure and no full recovery was observed. Growth rates decreased after three days in the presence of UVR and under low nitrate supply. However, these rates were similar when compared with treatments of PAR and PAR + UVR after seven days, with the exception of samples in 0 mM NO3-, indicating that the acclimation after one week's exposure is related to nitrate supply. In conclusion, the lowest negative effect of UVR on photosynthesis and growth rate in high N-supply-grown algae could be explained by the stimulation of photoprotection mechanisms, such as accumulation of MAAs. Photostimulation of MAA accumulation by UVR under high N supply was observed in G. tenuistipitata even after 20 years in culture without the induction of this photomorphogenic light signal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphological variation within and among many species of algae show correlated life history traits. The trade-offs of Life history traits among different morphs are presumed to be determined by morphology. Form-function hypotheses also predict that algae of different morphological groups exhibit different tolerances to physiological stress, whereas algae within a morphological group respond similarly to stress. We tested this hypothesis by comparing photosynthetic and respiratory responses to variation in season, light, temperature, desiccation and freezing among the morphologically similar fronds of Chondrus crispus and Mastocarpus stellatus and the alternate stage crust of M. stellatus. Physiological differences between fronds of the 2 species and crusts and fronds were consistent with their patterns of distribution and abundance in the intertidal zone. However, there was no clear relationship between algal morphology and physiological response to environmental variation. These results suggest that among macroalgae the correlation between Life history traits and morphology is not always causal. Rather, the link between life history traits and morphology is constrained by the extent to which physiological characteristics codetermine these features.