989 resultados para Phytate Hydrolysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microwave reactor system was investigated as a potential technique to maximize sugar yield for the hydrolysis of municipal solid waste for ethanol production. Specifically, dilute acid hydrolysis of a-cellulose and waste cellulosic biomass (grass clippings) with phosphoric acid was undertaken within the microwave reactor system. The experimental data and reaction kinetic analysis indicate that the use of a microwave reactor system can successfully facilitate dilute acid hydrolysis of cellulose and waste cellulosic biomass, producing high yields of total sugars in short reaction times. The maximum yield of reducing sugars was obtained at 7.5% (w/v) phosphoric acid and 160 degrees C, corresponding to 60% of the theoretical total sugars, with a reaction time of 5 min. When using a very low acid concentration (0.4% w/v) for the hydrolysis in the microwave reactor, it was found that 10 g of total sugars/100 g dry mass was produced, which is significant considering the low acid concentration. When hydrolyzing grass clippings using the microwave reactor, the optimum conditions were an acid concentration of 2.5% (w/v), 175 degrees C with a 15 min reaction time, giving 18 g/100 g dry mass of total sugars, with xylose being the sugar with the highest yield. It was observed that pentose sugars were more easily formed but also more easily degraded, these being significantly affected by increases in acid concentration and temperature. Kinetic modeling of the data indicated that the use of microwave heating may account for an increase in reaction rate constant, k(1), found in this study in comparison with conventional systems described in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of the alkaline hydrolysis of trinitrotoluene, TNT, in an aqueous solution is a possible approach to destroying the active agent in unwanted munitions. The kinetics are shown to have a rapid initial step, step A, in which a highly coloured species, X (lambda(max) = 450 nm) is formed via an equilibrium reaction: TNT + OH- double left right arrow X. The bimolecular rate constant for the forward part of this equilibrium process, k(1), is: 0.099 +/- 0.004, 0.32 +/- 0.02 and 1.27 +/- 0.05 dm(3) mol(-1) s(-1), at 25, 40 and 60degreesC, respectively. The activation energy for the forward process is 60 kJ mol(-1). The first-order rate constant for the reverse of this process, k(-1), is: (5.3 +/- 2.6) x 10(-4), (1.2 +/- 1.0) x 10(-3) and (7.7 +/- 2.9) x 10(-3) s(-1) at 25, 40 and 60degreesC, respectively. The activation energy for the overall equilibrium process (k(1)/k(-1)) is ca. -5 kJ mol(-1). The subsequent alkaline hydrolysis of X to form the final product P, i.e. step B, is much slower than step A and appears to comprise two processes coupled in series, i.e. steps B1 (X +2OH(-) --> Z) and B2 (Z+OH- --> P). At 25degreesC, Step B1 appears rate determining throughout the decay process. At 45 degreesC and, more so, at 60degreesC, step B appears increasingly biphasic with increasing alkaline concentrations, as step B2 begins to compete with step B1 for position as the rate determining step. The trimolecular rate constant for step B1 is: 0.017 +/- 0.001, 0.0085 +/- 0.0002 and 0.0011 +/- 0.0001 dm(6) mol(-2) s(-1) at 25, 40 and 60degreesC, respectively, and the process has an activation energy of 64 kJ mol(-1). The transition from uniform kinetics, described by step B1, to mixed kinetics, described by steps B1 and B2, as the reaction temperature and alkali concentration are increased most likely occurs because (a) step B2 has a lower activation energy than B1, although it was not possible to measure the former parameter, and (b) step B2 has a lower (1st) order dependence upon [OH-] compared with that of step B1 (2nd). The bimolecular rate constant for step B2 is 0.0035 +/- 0.03 dm(3) mol(-1) s(-1) at 60degreesC. A brief NMR study of the initial hydrolysis product in water, acetone and chloroform, coupled with UV/visible spectra, provides evidence that species X is a Meisenheimer complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residues of 19-nortestosterone (19-NT) and diethylstilboestrol (DES) are excreted in bovine urine, mainly conjugated to glucuronic acid. Prior to quantification, urine must be deconjugated, which is commonly performed by enzymatic or chemical hydrolysis. The efficiencies of two enzymatic and two chemical deconjugation methods were studied. The range of efficiencies obtained for DES were 51.8% (beta -glucuronidase, incubation at 37 degreesC overnight) and 2.7% (methanolic HCl), respectively. Similarly, efficiencies for NT ranged from 43.1% (beta -glucuronidase, incubation at 55 degreesC for 2 h) to 12.7% (methanolic HCl). The results highlight that within control laboratories significant underestimation of drug residue content in samples may occur, due to poor deconjugation. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zirconia modified SBA-15 becomes a very active catalyst for the selective hydrolysis of cellobiose to glucose after sulfation. Spectroscopic investigations indicate the presence of Bronsted acid sites with similar properties to those present in conventional sulfated zirconia. Indications are found that the sulfate groups attached to zirconia interact with silanol groups of SBA-15. The catalytic activity in cellobiose hydrolysis correlates well with results for temperature-programmed decomposition of i-propylamine for a range of sulfated ZrO2/SBA-15 catalysts. A glucose yield of 60% during cellobiose hydrolysis at a reaction time of 90 min at 160 degrees C is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of the organic fraction of municipal solid waste crops has received considerable attention as a sustainable feedstock that can replace fossil fuels for the production of renewable energy. Therefore, municipal bin-waste in the form of hay was investigated as a potential energy crop for fermentable sugars production. Hydrolysis of hay by dilute phosphoric acid was carried out in autoclave parr reactor, where reactor temperature (135-200 degrees c) and acid concentration (2.5-10% (w/w)) were examined. Analysis of the decomposition rate of hemicellulosic biomass was undertaken using HPLC of the reaction products. Xylose production reached a maximum value of 13.5 g/100 g dry mass corresponding to a yield of 67% at the best identified conditions of 2.5 wt% H3PO4, 175 degrees C, 10 min reaction time, and at 5 wt% H3PO4, 150 degrees C, and 5 min reaction time. For glucose, an average yield of 25% was obtained at 5 wt% H3PO4, 175 degrees C and 30 min. Glucose degradation to HMF was achieved at 10 wt% H3PO4 and 200 degrees C. The maximum yield for produced arabinose was an average of 3 g/100 g dry. mass corresponding to 100% of the total possible arabinose. The kinetic study of the acid hydrolysis was also carried out using the Saeman and the Two-fraction models. It was found for both models that the kinetic constants (k) depend on the acid concentration and temperature. For xylose and arabinose it was found that the rate of formation was more favoured than the rate of degradation. By contrast, for glucose it was found that glucose degradation was occurring faster than glucose formation. It can be concluded that dilute phosphoric acid hydrolysis of hay crop is feasible for the production of fermentable sugars which are essential for bioethanol synthesis. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The visibility of using municipal bio-waste, wood shavings, as a potential feedstock for ethanol production was investigated. Dilute acid hydrolysis of wood shavings with H3PO4 was undertaken in autoclave parr reactor. A combined severity factor (CSF) was used to integrate the effects of hydrolysis times, temperature and acid concentration into a single variable. Xylose concentration reached a maximum value of 17 g/100 g dry mass corresponding to a yield of 100% at the best identified conditions of 2.5 wt.% H3PO4, 175 degrees C and 10 min reaction time corresponding to a CSF of 1.9. However, for glucose, an average yield of 30% was obtained at 5 wt.% H3PO4, 200 degrees C and 10 min. Xylose production increased with increasing temperature and acid concentration, but its transformation to the degradation product furfural was also catalysed by those factors. The maximum furfural formed was 3 g/100 g dry mass, corresponding to the 24% yield. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The urgent need for alternative renewable energies to supplement petroleum-based fuels and the reduction of landfill sites for disposal of solid wastes makes it increasingly attractive to produce inexpensive biofuels from the organic fraction of the municipal solid waste. Therefore, municipal waste in the form of newspaper was investigated as a potential feedstock for fermentable sugars production. Hydrolysis of newspaper by dilute phosphoric acid was carried out in autoclave Parr reactor, where reactor temperature and acid concentration were examined. Xylose concentration reached a maximum value of 14 g/100 g dry mass corresponding to a yield of 94% at the best identified conditions of 2.5 wt% HPO, 135°C, 120 min reaction time, and at 2.5 wt% HPO, 150°C, and 60 min reaction time. For glucose, an average yield of 26% was obtained at 2.5 wt% HPO, 200°C, and 30 min. Furfural and 5-hydroxymethylfurfural (HMF) formation was clearly affected by reaction temperature, where the higher the temperature the higher the formation rate. The maximum furfural formed was an average of 3 g/100 g dry mass, corresponding to a yield of 28%. The kinetic study of the acid hydrolysis was also carried out using the Saeman and the two-fraction models. It was found for both models that the kinetic constants (K) depend on the acid concentration and temperature. The degradation of HMF to levulinic acid is faster than the degradation of furfural to formic acid. Also, the degradation rate is higher than the formation rate for both inhibitors when degradation is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paralytic Shellfish Poisoning (PSP) is a serious human illness caused by ingestion of seafood enriched with paralytic shellfish toxins (PSTs). PSTs are neurotoxic compounds produced by marine dinoflagellates, specifically by Alexandrium spp., Gymnodinium catenatum and Pyrodinium bahamense. Every year, massive monitoring of PSTs and their producers is undertaken worldwide to avoid PSP incidences. Here we developed a sensitive, hydrolysis probe-based quantitative PCR (qPCR) assay to detect a gene essential for PST synthesis across different dinoflagellate species and genera and tested it on cDNA generated from environmental samples spiked with Alexandrium minutum or Alexandrium fundyense cells. The assay was then applied to two environmental sample series from Norway and Spain and the results were complemented with cell counts, LSU-based microarray data and toxin measurements (enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) biosensor method). The overall agreement between the results of the qPCR assay and the complementary data was good. The assay reliably detected sxtA transcripts from Alexandrium spp. and G. catenatum, even though Alexandrium spp. cell concentrations were mostly so low that they could not be quantified microscopically. Agreement between the novel assay and toxin measurements or cell counts was generally good; the few inconsistencies observed were most likely due to disparate residence times of sxtA transcripts and PSTs in seawater, or, in the case of cell counts, to dissimilar sxtA4 transcript numbers per cell in different dinoflagellate strains or species. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hydrolyzable model network comprising interconnected star polymers was prepared by the sequential group transfer polymerization of methyl methacrylate and the acid-labile diacetal-based dimethacrylate crosslinker bis[(2-methacryloyloxy)ethoxymethyl] ether. in contrast to other polymer networks previously synthesized by our group, all the branching points of this polymer network were found to hydrolyze under mildly acidic conditions, giving a linear copolymer with the theoretically expected molecular weight and composition. The ease of hydrolysis of this polymer network renders it a good candidate for use in the biomedical field. The characterization of the synthesized network, its linear and star polymer precursors and the hydrolysis products of the network and its precursors, by a variety of techniques, established the successful synthesis and hydrolysis of this well-defined polymer nanostructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title process comprises admixing cellulose with an ionic liq. capable of solvating or dissolving at least some of the cellulose, the ionic liq. being a compd. comprised solely of cations and anions (e.g., 1-ethyl-3-methylimidazolium sulfate) and which exists in a liq. state at a temp. at or below 150°, and in which the anions are selected from sulfate, hydrogen sulfate and nitrate; and treating the resulting solvate or soln. with an acid in the presence of water, the acid having a pKa in water of less than 2 at 25°. [on SciFinder(R)]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title process comprises admixing cellulose with an ionic liq. capable of solvating or dissolving at least some of the cellulose, the ionic liq. being a compd. comprised solely of cations and anions (e.g., 1-ethyl-3-methylimidazolium sulfate) and which exists in a liq. state at a temp. at or below 150°, the cations in the ionic liq. having the general formula R1Z(R2)(R3)R4: in which Z represents a nitrogen or phosphorus atom, R1 represents a Me or Et group, each of R2 and R3, which may be the same or different, is selected from C4-8alkyl, optionally-substituted benzyl, optionally-substituted Ph, and C5-7cycloalkyl, and R4 represents C1-8 alkyl, optionally-substituted benzyl, optionally-substituted Ph or C5-7cyclohexyl; in which the optional substituents on a benzyl or Ph ring are one, two or three substituents selected from C1-4alkyl or alkoxy groups, halogen atoms and nitro groups; and treating the resulting solvate or soln. with an acid in the presence of water, the acid having a pKa in water of less than 2 at 25°. [on SciFinder(R)]