985 resultados para Nuclear Proteins


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both cis-diamminedichloroplatinum(II) (cisplatin or cis-DDP) and trans-diamminedichloroplatinum(II) form covalent adducts with DNA. However, only the cis isomer is a potent anticancer agent. It has been postulated that the selective action of cis-DDP occurs through specific binding of nuclear proteins to cis-DDP-damaged DNA sites and that binding blocks DNA repair. We find that a very abundant nuclear protein, the linker histone H1, binds much more strongly to cis-platinated DNA than to trans-platinated or unmodified DNA. In competition experiments, H1 is shown to bind much more strongly than HMG1, which had been previously considered a major candidate for such binding in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ets factors play a critical role in oncogenic Ras- and growth factor-mediated regulation of the proximal rat prolactin (rPRL) promoter in pituitary cells. The rPRL promoter contains two key functional Ets binding sites (EBS): a composite EBS/Pit-1 element located at –212 and an EBS that co-localizes with the basal transcription element (BTE, or A-site) located at –96. Oncogenic Ras exclusively signals to the –212 site, which we have named the Ras response element (RRE); whereas the response of multiple growth factors (FGFs, EGF, IGF, insulin and TRH) maps to both EBSs. Although Ets-1 and GA binding protein (GABP) have been implicated in the Ras and insulin responses, respectively, the precise identity of the pituitary Ets factors that specifically bind to the RRE and BTE sites remains unknown. In order to identify the Ets factor(s) present in GH4 and GH3 nuclear extracts (GH4NE and GH3NE) that bind to the EBSs contained in the RRE and BTE, we used EBS-RRE and BTE oligonucleotides in electrophoretic mobility shift assays (EMSAs), antibody supershift assays, western blot analysis of partially purified fractions and UV-crosslinking studies. EMSAs, using either the BTE or EBS-RRE probes, identified a specific protein–DNA complex, designated complex A, which contains an Ets factor as determined by oligonucleotide competition studies. Using western blot analysis of GH3 nuclear proteins that bind to heparin–Sepharose, we have shown that Ets-1 and GABP, which are MAP kinase substrates, co-purify with complex A, and supershift analysis with specific antisera revealed that complex A contains Ets-1, GABPα and GABPβ1. In addition, we show that recombinant full-length Ets-1 binds equivalently to BTE and EBS-RRE probes, while recombinant GABPα/β preferentially binds to the BTE probe. Furthermore, comparing the DNA binding of GH4NE containing both Ets-1 and GABP and HeLa nuclear extracts devoid of Ets-1 but containing GABP, we were able to show that the EBS-RRE preferentially binds Ets-1, while the BTE binds both GABP and Ets-1. Finally, UV-crosslinking experiments with radiolabeled EBS-RRE and BTE oligonucleotides showed that these probes specifically bind to a protein of ∼64 kDa, which is consistent with binding to Ets-1 (54 kDa) and/or the DNA binding subunit of GABP, GABPα (57 kDa). These studies show that endogenous, pituitary-derived GABP and Ets-1 bind to the BTE, whereas Ets-1 preferentially binds to the EBS-RRE. Taken together, these data provide important insights into the mechanisms by which the combination of distinct Ets members and EBSs transduce differential growth factor responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In response to IFN-γ, the latent cytoplasmic Stat1 (signal transducer and activator of transcription) proteins translocate into the nucleus and activate transcription. We showed previously that Stat1 recruits a group of nuclear proteins, among them MCM5 (minichromosome maintenance) and MCM3, for transcription activation. MCM5 directly interacts with the transcription activation domain (TAD) of Stat1 and enhances Stat1-mediated transcription activation. In this report, we identified two specific residues (R732, K734) in MCM5 that are required for the direct interaction between Stat1 and MCM5 both in vitro and in vivo. MCM5 containing mutations of R732/K734 did not enhance Stat1-mediated transcription activation in response to IFN-γ. In addition, it also failed to form complexes with other MCM proteins in vivo, suggesting that these two residues may be important for an interaction domain in MCM5. Furthermore, MCM5 bearing mutations in its ATPase and helicase domains did not enhance Stat1 activity. In vitro binding assays indicate that MCM3 does not interact directly with Stat1, suggesting that the presence of MCM3 in the group of Stat1TAD-interacting proteins is due to the association of MCM3 with MCM5. Finally, gel filtration analyses of nuclear extracts from INF-γ-treated cells demonstrate that there is a MCM5/3 subcomplex coeluting with Stat1. Together, these results strongly suggest that Stat1 recruits a MCM5/3 subcomplex through direct interaction with MCM5 in the process of IFN-γ-induced gene activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(ADP-ribose) polymerase-1 (PARP-1; EC 2.4.2.30) is an abundant nuclear enzyme, activated by DNA strand breaks to attach up to 200 ADP-ribose groups to nuclear proteins. As retroviral infection requires integrase-catalyzed DNA strand breaks, we examined infection of pseudotyped HIV type I in fibroblasts from mice with a targeted deletion of PARP-1. Viral infection is almost totally abolished in PARP-1 knockout fibroblasts. This protection from infection reflects prevention of viral integration into the host genome. These findings suggest a potential for PARP inhibitors in therapy of HIV type I infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Down-regulation of cell surface growth factor receptors plays a key role in the tight control of cellular responses. Recent reports suggest that the ubiquitin system, in addition to participating in degradation by the proteasome of cytosolic and nuclear proteins, might also be involved in the down-regulation of various membrane receptors. We have previously characterized a signal in the cytosolic part of the interleukin 2 receptor β chain (IL2Rβ) responsible for its targeting to late endosomes/lysosomes. In this report, the role of the ubiquitin/proteasome system on the intracellular fate of IL2Rβ was investigated. Inactivation of the cellular ubiquitination machinery in ts20 cells, which express a thermolabile ubiquitin-activating enzyme E1, leads to a significant decrease in the degradation rate of IL2Rβ, with little effect on its internalization. In addition, we show that a fraction of IL2Rβ can be monoubiquitinated. Furthermore, mutation of the lysine residues of the cytosolic region of a chimeric receptor carrying the IL2Rβ targeting signal resulted in a decreased degradation rate. When cells expressing IL2Rβ were treated either by proteasome or lysosome inhibitors, a significant decrease in receptor degradation was observed. Our data show that ubiquitination is required for the sorting of IL2Rβ toward degradation. They also indicate that impairment of proteasome function might more generally affect intracellular routing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypertonic shock of Saccharomyces cerevisiae activates the Hog1p MAP kinase cascade. In contrast, protein kinase C (Pkc1p) and the “cell integrity” MAP kinase cascade are critical for the response to hypotonic shock. We observed that hypertonic shock transiently relocated many, but not all, nuclear and nucleolar proteins to the cytoplasm. We hypothesized that the relocation of nuclear proteins was due to activation of the Hog1p kinase cascade, yet, surprisingly, Hog1p was not required for these effects. In contrast, Pkc1p kinase activity was required, although the Pkc1p MAP kinase cascade and several factors known to lie upstream and downstream of Pkc1p were not. Moreover, sudden induction of a hyperactive form of Pkc1p was sufficient to relocate nuclear proteins. Taken together, these observations show that the scope of involvement of Pkc1p in the organization of the nucleus considerably exceeds what has been characterized previously. The relocation of nuclear proteins is likely to account for the profound inhibition of RNA synthesis that was observed during hypertonic shock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Testis angiotensin-converting enzyme (ACE) is a unique form of ACE, only produced by male germ cells, and results from a testis-specific promoter found within the ACE gene. We have investigated the role of cAMP-response element modulator (CREM)tau in testis ACE transcription. In gel shift experiments, testes nuclear proteins retard an oligonucleotide containing the cAMP-response element (CRE) found at position -55 in the testis ACE promoter. Anti-CREM antibody supershifts this complex. Competitive gel shift shows that recombinant CREM tau protein and testis nuclear proteins have a similar specificity of binding to the tests ACE CRE. Functional analysis using in vitro transcription and transfection studies also demonstrate that CREM tau protein is a transcriptional activator of the testis ACE promoter. Western blot analysis identifies CREM tau protein in the protein-DNA complex formed between nuclear proteins and the testis ACE CRE motif. This analysis also identified other CREM isoforms in the gel-shifted complex, which are thought to be CREM tau 1/2, CREM alpha/beta, and S-CREM. These data indicate that CREM tau isoforms play an important role as a positive regulator in the tissue-specific expression of testis ACE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transcriptional regulation by nuclear hormone receptors is thought to involve interactions with putative cofactors that may potentiate receptor function. Here we show that human thyroid hormone receptor alpha purified from HeLa cells grown in the presence of thyroid hormone (T3) is associated with a group of distinct nuclear proteins termed thyroid hormone receptor-associated proteins (TRAPs). In an in vitro system reconstituted with general initiation factors and cofactors (and in the absence of added T3), the "liganded" thyroid hormone receptor (TR)/TRAP complex markedly activates transcription from a promoter template containing T3-response elements. Moreover, whereas the retinoid X receptor is not detected in the TR/TRAP complex, its presence is required for the function of the complex. In contrast, human thyroid hormone receptor alpha purified from cells grown in the absence of T3 lacks the TRAPs and effects only a low level of activation that is dependent on added ligand. These findings demonstrate the ligand-dependent in vivo formation of a transcriptionally active TR-multisubunit protein complex and suggest a role for TRAPs as positive coactivators for gene-specific transcriptional activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although proteases related to the interleukin 1 beta-converting enzyme (ICE) are known to be essential for apoptotic execution, the number of enzymes involved, their substrate specificities, and their specific roles in the characteristic biochemical and morphological changes of apoptosis are currently unknown. These questions were addressed using cloned recombinant ICE-related proteases (IRPs) and a cell-free model system for apoptosis (S/M extracts). First, we compared the substrate specificities of two recombinant human IRPs, CPP32 and Mch2 alpha. Both enzymes cleaved poly-(ADP-ribose) polymerase, albeit with different efficiencies. Mch2 alpha also cleaved recombinant and nuclear lamin A at a conserved VEID decreases NG sequence located in the middle of the coiled-coil rod domain, producing a fragment that was indistinguishable from the lamin A fragment observed in S/M extracts and in apoptotic cells. In contrast, CPP32 did not cleave lamin A. The cleavage of lamin A by Mch2 alpha and by S/M extracts was inhibited by millimolar concentrations of Zn2+, which had a minimal effect on cleavage of poly (ADP-ribose) polymerase by CPP32 and by S/M extracts. We also found that N-(acetyltyrosinylvalinyl-N epsilon-biotinyllysyl)aspartic acid [(2,6-dimethylbenzoyl)oxy]methyl ketone, which derivatizes the larger subunit of active ICE, can affinity label up to five active IRPs in S/M extracts. Together, these observations indicate that the processing of nuclear proteins in apoptosis involves multiple IRPs having distinct preferences for their apoptosis-associated substrates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bacterium Myxococcus xanthus responds to blue light by producing carotenoids. It also responds to starvation conditions by developing fruiting bodies, where the cells differentiate into myxospores. Each response entails the transcriptional activation of a separate set of genes. However, a single gene, carD, is required for the activation of both light- and starvation-inducible genes. Gene carD has now been sequenced. Its predicted amino acid sequence includes four repeats of a DNA-binding domain present in mammalian high mobility group I(Y) proteins and other nuclear proteins from animals and plants. Other peptide stretches on CarD also resemble functional domains typical of eukaryotic transcription factors, including a very acidic region and a leucine zipper. High mobility group yI(Y) proteins are known to bind the minor groove of A+T-rich DNA. CarD binds in vitro an A+T-rich element that is required for the proper operation of a carD-dependent promoter in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Expression of mitogenic basic fibroblast growth factor (bFGF) in the central nervous system is inhibited by direct cell contact and is implicated in reactive and neoplastic transformation of astrocytes. The molecular mechanisms controlling expression of bFGF were examined in cultures of human astrocytes. Cell-density-dependent depletion of bFGF mRNA levels parallels changes in bFGF gene protein. Regulation of transcription of a bFGF luciferase reporter gene containing an upstream region (bp -1800 to +314) of the bFGF gene promoter mimicks the density-dependent regulation of the endogenous bFGF gene in transfected astrocytes. Deletion analysis has identified a fragment (bp -650 to -513) and sequences further downstream (bp -274 to +314) as the regions required for the regulation of bFGF gene activity by cell density. Unlike in astrocytes, changing the cell density of glioma cell cultures does not affect the levels of bFGF protein and mRNA. bFGF luciferase constructs were expressed at the same level in high- or low-density cultures of glioma cells, indicating altered regulation of the bFGF gene promoter. Electrophoretic mobility shift assays showed binding of nuclear proteins to a fragment of bFGF gene promoter from bp -650 to -453. This binding was abolished by a deletion of the upstream cell-density-responsive region (bp -650 to -512). Binding was observed with nuclear extracts from subconfluent astrocytes but was reduced in extracts from confluent astrocytes. Our results indicate that induction of bFGF in astrocytes upon reduction of cell density is mediated transcriptionally by positive trans-acting factors interacting with bFGF promoter. In contrast, nuclear proteins from glioma cells bind to the promoter region from bp -650 to -453 independent of cell density. Thus, the constitutive binding of trans-acting factor(s) to the region of the bFGF promoter from bp -650 to -453 may be responsible for the continuous expression of bFGF that leads to the uncontrolled growth of glioma cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A sequence of epithelial cell proliferation, allocation to four principal lineages, migration-associated differentiation, and cell loss occurs along the crypt-villus axis of the mouse intestine. The sequence is completed in a few days and is recapitulated throughout the life-span of the animal. We have used an intestine-specific fatty acid binding protein gene, Fabpi, as a model for studying regulation of gene expression in this unique developmental system. Promoter mapping studies in transgenic mice identified a 20-bp cis-acting element (5'-AGGTGGAAGCCATCACACTT-3') that binds small intestinal nuclear proteins and participates in the control of Fabpi's cephalocaudal, differentiation-dependent, and cell lineage-specific patterns of expression. Immunocytochemical studies using confocal and electron microscopy indicate that it does so by acting as a suppressor of gene expression in the distal small intestine/colon, as a suppressor of gene activation in proliferating and nonproliferating cells located in the crypts of Lieberkühn, and as a suppressor of expression in the growth factor and defensin-producing Paneth cell lineage. The 20-bp domain has no obvious sequence similarities to known transcription factor binding sites. The three functions modulated by this compact element represent the types of functions required to establish and maintain the intestine's remarkably complex spatial patterns of gene expression. The transgenes described in this report also appear to be useful in characterizing the crypt's stem cell hierarchy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cross-species comparative genomics is a powerful strategy for identifying functional regulatory elements within noncoding DNA. In this paper, comparative analysis of human and mouse intronic sequences in the breast cancer susceptibility gene (BRCA1) revealed two evolutionarily conserved noncoding sequences (CNS) in intron 2, 5 kb downstream of the core BRCA1 promoter. The functionality of these elements was examined using homologous-recombination-based mutagenesis of reporter gene-tagged cosmids incorporating these regions and flanking sequences from the BRCA1 locus. This showed that CNS-1 and CNS-2 have differential transcriptional regulatory activity in epithelial cell lines. Mutation of CNS-1 significantly reduced reporter gene expression to 30% of control levels. Conversely mutation of CNS-2 increased expression to 200% of control levels. Regulation is at the level of transcription and shows promoter specificity. Both elements also specifically bind nuclear proteins in vitro. These studies demonstrate that the combination of comparative genomics and functional analysis is a successful strategy to identify novel regulatory elements and provide the first direct evidence that conserved noncoding sequences in BRCA1 regulate gene expression. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Candida albicans is a pathogen commonly infecting patients who receive immunosuppressive drug therapy, long-term catheterization, or those who suffer from acquired immune deficiency syndrome (AIDS). The major factor accountable for pathogenicity of C. albicans is host immune status. Various virulence molecules, or factors, of are also responsible for the disease progression. Virulence proteins are published in public databases but they normally lack detailed functional annotations. We have developed CandiVF, a specialized database of C. albicans virulence factors (http://antigen.i2r.a-star.edu.sg/Templar/DB/CandiVF/) to facilitate efficient extraction and analysis of data aimed to assist research on immune responses, pathogenesis, prevention, and control of candidiasis. CandiVF contains a large number of annotated virulence proteins, including secretory, cell wall-associated, membrane, cytoplasmic, and nuclear proteins. This database has in-built bioinformatics tools including keyword and BLAST search, visualization of 3D-structures, HLA-DR epitope prediction, virulence descriptors, and virulence factors ontology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: During alternative splicing, the inclusion of an exon in the final mRNA molecule is determined by nuclear proteins that bind cis-regulatory sequences in a target pre-mRNA molecule. A recent study suggested that the regulatory codes of individual RNA-binding proteins may be nearly immutable between very diverse species such as mammals and insects. The model system Drosophila melanogaster therefore presents an excellent opportunity for the study of alternative splicing due to the availability of quality EST annotations in FlyBase. Methods: In this paper, we describe an in silico analysis pipeline to extract putative exonic splicing regulatory sequences from a multiple alignment of 15 species of insects. Our method, ESTs-to-ESRs (E2E), uses graph analysis of EST splicing graphs to identify mutually exclusive (ME) exons and combines phylogenetic measures, a sliding window approach along the multiple alignment and the Welch’s t statistic to extract conserved ESR motifs. Results: The most frequent 100% conserved word of length 5 bp in different insect exons was “ATGGA”. We identified 799 statistically significant “spike” hexamers, 218 motifs with either a left or right FDR corrected spike magnitude p-value < 0.05 and 83 with both left and right uncorrected p < 0.01. 11 genes were identified with highly significant motifs in one ME exon but not in the other, suggesting regulation of ME exon splicing through these highly conserved hexamers. The majority of these genes have been shown to have regulated spatiotemporal expression. 10 elements were found to match three mammalian splicing regulator databases. A putative ESR motif, GATGCAG, was identified in the ME-13b but not in the ME-13a of Drosophila N-Cadherin, a gene that has been shown to have a distinct spatiotemporal expression pattern of spliced isoforms in a recent study. Conclusions: Analysis of phylogenetic relationships and variability of sequence conservation as implemented in the E2E spikes method may lead to improved identification of ESRs. We found that approximately half of the putative ESRs in common between insects and mammals have a high statistical support (p < 0.01). Several Drosophila genes with spatiotemporal expression patterns were identified to contain putative ESRs located in one exon of the ME exon pairs but not in the other.