932 resultados para Non-model organisms
Resumo:
Progressive telomere shortening from cell division (replicative aging) provides a barrier for human tumor progression. This program is not conserved in laboratory mice, which have longer telomeres and constitutive telomerase. Wild species that do ⁄ do not use replicative aging have been reported, but the evolution of different phenotypes and a conceptual framework for understanding their uses of telomeres is lacking. We examined telomeres ⁄ telomerase in cultured cells from > 60 mammalian species to place different uses of telomeres in a broad mammalian context. Phylogeny-based statistical analysis reconstructed ancestral states. Our analysis suggested that the ancestral mammalian phenotype included short telomeres (< 20 kb, as we now see in humans) and repressed telomerase. We argue that the repressed telomerase was a response to a higher mutation load brought on by the evolution of homeothermy. With telomerase repressed, we then see the evolution of replicative aging. Telomere length inversely correlated with lifespan, while telomerase expression co-evolved with body size. Multiple independent times smaller, shorter-lived species changed to having longer telomeres and expressing telomerase. Trade-offs involving reducing the energetic ⁄ cellular costs of specific oxidative protection mechanisms (needed to protect < 20 kb telomeres in the absence oftelomerase) could explain this abandonment of replicative aging. These observations provide a conceptual framework for understanding different uses of telomeres in mammals, support a role for human-like telomeres in allowing longer lifespans to evolve, demonstrate the need to include telomere length in the analysis of comparative studies of oxidative protection in the biology of aging, and identify which mammals can be used as appropriate model organisms for the study of the role of telomeres in human cancer and aging. Key words: evolution of telomeres; immortalization; telomerase; replicative aging; senescence.
Resumo:
Coconut, Cocos nucifera L. is a major plantation crop, which ensures income for millions of people in the tropical region. Detailed molecular studies on zygotic embryo development would provide valuable clues for the identification of molecular markers to improve somatic embryogenesis. Since there is no ongoing genome project for this species, coconut expressed sequence tags (EST) would be an interesting technique to identify important coconut embryo specific genes as well as other functional genes in different biochemical pathways. The goal of this study was to analyse the ESTs by examining the transcriptome data of the different embryo tissue types together with one somatic tissue. Here, four cDNA libraries from immature embryo, mature embryo, microspore derived embryo and mature leaves were constructed. cDNA was sequenced by the Roche-454 GS-FLX system and assembled into 32621 putative unigenes and 155017 singletons. Of these unigenes, 18651 had significant sequence similarities to non-redundant protein database, from which 16153 were assigned to one or more gene ontology categories. Homologue genes, which are responsible for embryo development such as chitinase, beta-1,3-glucanase, ATP synthase CF0 subunit, thaumatin-like protein and metallothionein-like protein were identified among the embryo EST collection. Of the unigenes, 6694 were mapped into 139 KEGG pathways including carbohydrate metabolism, energy metabolism, lipid metabolism, amino acid metabolism and nucleotide metabolism. This collection of 454-derived EST data generated from different tissue types provides a significant resource for genome wide studies and gene discovery of coconut, a non-model species.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Na agricultura moderna, diversas tecnologias auxiliam no aumento da produtividade, sendo o herbicida uma delas, mas existem consequências atreladas ao seu uso, como os diversos efeitos sobre organismos não alvos. Neste trabalho, objetivou-se verificar esses efeitos sobre agentes fitopatogênicos, assim como avaliar o efeito do herbicida glyphosate sobre diversas doenças, em plantas de soja transgênicas. Verificou-se forte ação fungicida com o uso do herbicida glyphosate, assim como os outros avaliados in vitro, sobre os fungos testados, e os mesmos resultados foram observados nas plantas em condição de campo.
Resumo:
This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically>30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, two sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with an experimental example, an investigation on a massive quarter scale model of a steel bridge section, in order to verify the performance of this proposed methodology.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Biological control of Diatraea saccharalis is regarded as one of the best examples of successful classical biological control in Brazil. Since the introduction of the exotic parasitoid Cotesia flavipes, the decrease of D. saccharalis infestation in sugarcane fields has been attributed to the effectiveness of this agent. Recently, the native tachinid fly parasitoids (Lydella minense and Paratheresia claripalpis) have also been implicated in the success. Here, we investigated the spatial and temporal population interactions between C. flavipes and the tachinid flies, and provide a critical analysis of the biological control practice, focusing on the undesirable effects of introductions of exotic natural enemies. To investigate these questions, a large data set comprising information from two sugarcane mills located in the state of São Paulo, Brazil (Barra and Sao Joao Mills), was analysed. Analysis of the correlation between C. flavipes and tachinid fly population densities through time revealed that such populations were inversely correlated in the Sao Joao Mill and not correlated in the Barra Mill. Logistic regressions were computed to investigate the proportion of sites occupied by the parasitoid species at both mills as a function of time. An increasing trend in the proportion of sites occupied by C. flavipes was observed, with a concomitant decrease of the sites occupied by tachinid flies. This effect was more intense in the Sao Joao Mill. Thus, there is a convincing possibility that constant releases of C. flavipes decreased the tachinid fly populations, resulting in an undesirable effect of biological control practice.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a non-model based technique to detect and locate structural damage with the use of artificial neural networks. This method utilizes high frequency structural excitation (typically greater than 30 kHz) through a surface-bonded piezoelectric sensor/actuator to detect changes in structural point impedance due to the presence of damage. Two sets of artificial neural networks were developed in order to detect, locate and characterize structural damage by examining changes in the measured impedance curves. A simulation beam model was developed to verify the proposed method. An experiment was successfully performed in detecting damage on a 4-bay structure with bolted-joints, where the bolts were progressively released.
Resumo:
This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically >30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, multiple sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with experimental examples, investigations on a massive quarter scale model of a steel bridge section and a space truss structure, in order to verify the performance of this proposed methodology.
Resumo:
One of the main pesticides used in the cultivation of sugarcane in São Paulo State, Brazil, is Regent®800WG, the main active compound of which is fipronil. Fipronil is a potent insecticide that eliminates pests, including insects resistant to pyrethroids, organophosphates (OP) and carbamates (CA). There is little known on the toxic effects of fipronil on non-target organisms, such as tadpoles of frogs. It is possible that this compound carries a high toxicity for these organisms, since the pesticide can be incorporated into aquatic environments during the rainy season, a time which coincides with the time of amphibian reproduction and the occurrence of tadpoles in the aquatic environment in this region. Thus, the pesticide could be contributing to the decline of amphibians in the northwest region of São Paulo state due to its wide use. This study aimed to test the influence of Regent®800WG on some biochemical systems of tadpoles (such as antioxidant defense systems) at different stages of development. The results of analysis from in vivo exposures demonstrated that only a few parameters in the groups exposed to fipronil responded to exposure to Regent®800WG, results which indicate that the pesticide instigates biochemical responses in tadpoles. Although catalase and glucose-6-phosphate dehydrogenase (G6PDH) were unchanged during the experiments, glutathione-S-transferase (GST) was inhibited in tadpoles, and the activity of glutathione reductase (GR) varied according to the exposure period and pesticide concentration. This data demonstrated the influence of the fipronil formulation on the metabolism of tadpoles, and showed that it can increase their susceptibility to environmental contaminants. © 2013 Elsevier Ltd. All rights reserved.