946 resultados para Lipids
Resumo:
Few EU countries meet targets for saturated fatty acid (SFA) intake. Dairy products usually represent the single largest source of SFA, yet evidence indicates that milk has cardioprotective properties. Options for replacing some of the SFA in milk fat with cis-monounsaturated fatty acids (MUFA) through alteration of the cow’s diet are examined. Also, few people achieve minimum recommended intakes (~450–500 mg/d) of the long chain n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Enrichment of EPA+DHA in poultry meat via bird nutrition is described and how this would impact on habitual intake is discussed.
Resumo:
It has previously been shown that experimental infections of the parasitic trematode Schistosoma mansoni, the adult worms of which reside in the blood stream of the mammalian host, significantly reduced atherogenesis in apolipoprotein E gene knockout (apoE(-/-)) mice. These effects occurred in tandem with a lowering of serum total cholesterol levels in both apoE(-/-) and random-bred laboratory mice and a beneficial increase in the proportion of HDL to LDL cholesterol. To better understand how the parasitic infections induce these effects we have here investigated the involvement of adult worms and their eggs on lipids in the host. Our results indicate that the serum cholesterol-lowering effect is mediated by factors released from S. mansoni eggs, while the presence of adult worms seemed to have had little or no effect. It was also observed that high levels of lipids, particularly triacylglycerols and cholesteryl esters, present in the uninfected livers of both random-bred and apoE(-/-) mice fed a high-fat diet were not present in livers of the schistosome-infected mice. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this paper, we give an overview of our studies by static and time-resolved X-ray diffraction of inverse cubic phases and phase transitions in lipids. In 1, we briefly discuss the lyotropic phase behaviour of lipids, focusing attention on non-lamellar structures, and their geometric/topological relationship to fusion processes in lipid membranes. Possible pathways for transitions between different cubic phases are also outlined. In 2, we discuss the effects of hydrostatic pressure on lipid membranes and lipid phase transitions, and describe how the parameters required to predict the pressure dependence of lipid phase transition temperatures can be conveniently measured. We review some earlier results of inverse bicontinuous cubic phases from our laboratory, showing effects such as pressure-induced formation and swelling. In 3, we describe the technique of pressure-jump synchrotron X-ray diffraction. We present results that have been obtained from the lipid system 1:2 dilauroylphosphatidylcholine/lauric acid for cubic-inverse hexagonal, cubic-cubic and lamellar-cubic transitions. The rate of transition was found to increase with the amplitude of the pressure-jump and with increasing temperature. Evidence for intermediate structures occurring transiently during the transitions was also obtained. In 4, we describe an IDL-based 'AXCESS' software package being developed in our laboratory to permit batch processing and analysis of the large X-ray datasets produced by pressure-jump synchrotron experiments. In 5, we present some recent results on the fluid lamellar-Pn3m cubic phase transition of the single-chain lipid 1-monoelaidin, which we have studied both by pressure-jump and temperature-jump X-ray diffraction. Finally, in 6, we give a few indicators of future directions of this research. We anticipate that the most useful technical advance will be the development of pressure-jump apparatus on the microsecond time-scale, which will involve the use of a stack of piezoelectric pressure actuators. The pressure-jump technique is not restricted to lipid phase transitions, but can be used to study a wide range of soft matter transitions, ranging from protein unfolding and DNA unwinding and transitions, to phase transitions in thermotropic liquid crystals, surfactants and block copolymers.
Resumo:
Purpose of review This review critically evaluates recent studies investigating the effects of fatty acids on immune and inflammatory responses in both healthy individuals and in patients with inflammatory diseases, with some reference to animal studies where relevant. It examines recent findings describing the cellular and molecular basis for the modulation of immune function by fatty acids. The newly emerging area of diet-genotype interactions will also be discussed, with specific reference to the anti-inflammatory effects of fish oil. Recent findings Fatty acids are participants in many intracellular signalling pathways. They act as ligands for nuclear receptors regulating a host of cell responses, they influence the stability of lipid rafts, and modulate eicosanoid metabolism in cells of the immune system. Recent findings suggest that some or all of these mechanisms may be involved in the modulation of immune function by fatty acids. Summary Human studies investigating the relationship between dietary fatty acids and some aspects of the immune response have been disappointingly inconsistent. This review presents the argument that most studies have not been adequately powered to take into account the influence of variation (genotypic or otherwise) on parameters of immune function. There is well-documented evidence that fatty acids modulate T lymphocyte activation, and recent findings describe a range of potential cellular and molecular mechanisms. However, there are still many questions remaining, particularly with respect to the roles of nuclear receptors, for which fatty acids act as ligands, and the modulation of eicosanoid synthesis, for which fatty acids act as precursors.
Resumo:
Background: Conjugated linoleic acid (CLA) is reported to have weight-reducing and antiatherogenic properties when fed to laboratory animals. However, the effects of CLA on human health and, in particular, the effects of individual CLA isomers are unclear. Objective: This study investigated the effects of 3 doses of highly enriched cis-9,trans-11 (0.59, 1.19, and 2.38 g/d) or trans-10,cis-12 (0.63, 1.26, and 2.52 g/d) CLA preparations on body composition, blood lipid profile, and markers of insulin resistance in healthy men. Design: Healthy men consumed 1, 2, and 4 capsules sequentially, containing either 80% cis-9,trans-11 CLA or 80% trans-10,cis-12 CLA for consecutive 8-wk periods. This phase was followed by a 6-wk washout and a crossover to the other isomer. Results: Body composition was not significantly affected by either isomer of CLA. Mean plasma triacylglycerol concentration was higher during supplementation with trans-10,cis-12 CLA than during that with cis-9,trans-11 CLA, although there was no influence of dose. There were significant effects of both isomer and dose on plasma total cholesterol and LDL-cholesterol concentrations but not on HDL-cholesterol concentration. The ratios of LDL to HDL cholesterol and of total to HDL cholesterol were higher during supplementation with trans-10,cis-12 CLA than during that with cis-9,trans-11 CLA. CLA supplementation had no significant effect on plasma insulin concentration, homeostasis model for insulin resistance, or revised quantitative insulin sensitivity check index. Conclusion: Divergent effects of cis-9,trans-11 CLA and trans10,cis-12 CLA appear on the blood lipid profile in healthy humans: trans-10,cis-12 CLA increases LDL:HDL cholesterol and total:HDL cholesterol, whereas cis-9,trans-11 CLA decreases them.
Resumo:
Fractionation and reconstitution techniques were used to study the contribution of enclogenous flour lipids to the quality of semisweet (Rich Tea-type) biscuits. Biscuit flour was defatted with chloroform and baked with bakery fat but without enclogenous lipid addition. Semisweet biscuits baked from defatted flour were flatter, denser, and harder and showed collapse of gas cells during baking when compared with control biscuits. Defatted flour semisweet doughs exhibited a different rheological behavior from the control samples showing higher storage and loss moduli (G' and G" values), that is, high viscoelasticity. Functionality was restored when total nonstarch flour lipids were added back to defatted flour. Both the polar and nonpolar lipid fractions had positive effects in restoring flour quality, but the polar lipid fraction was of greatest benefit. Both fractions were needed for complete restoration of both biscuit quality and dough rheological characteristics.
Resumo:
Fractionation and reconstitution techniques were used to study the contribution of endogenous flour lipids to the quality of short-dough (shortcake type) biscuits. Biscuit flour was defatted with chloroform and baked with bakery fat, but without endogenous lipid. Short-dough biscuits baked from defatted flour had smaller diameters, and were flatter, denser and harder than control biscuits. Defatted flour shortcake doughs exhibited different rheological behaviour from the control samples, showing higher storage and loss moduli (G' and G" values), ie higher viscoelasticity. Functionality was restored when total non-starch flour lipids were added back to defatted flour. The polar lipid fraction had a positive effect in restoring flour quality whereas the non-polar lipid fraction had no effect. Both fractions were needed for complete restoration of both biscuit quality and dough rheological characteristics. A study of the microstructure of defatted biscuits revealed that their gluten protein was more hydrated and developed than the gluten of the control biscuits. This conclusion was supported by the higher water absorption of the defatted gluten. (C) 2004 Society of Chemical Industry.
Resumo:
Background: Indian Asians living in Western Countries have an over 50% increased risk of coronary heart disease (CHD) relative to their Caucasians counterparts. The atherogenic lipoprotein phenotype (ALP), which is more prevalent in this ethnic group, may in part explain the increased risk. A low dietary long chain n-3 fatty acid (LC n-3 PUFA) intake and a high dietary n-6 PUFA intake and n-6:n-3 PUFA ratio in Indian Asians have been proposed as contributors to the increased ALP incidence and CHD risk in this subgroup. Aim: To examine the impact of dietary n-6:n-3 PUFA ratio on membrane fatty acid composition, blood lipid levels and markers of insulin sensitivity in Indian Asians living in the UK. Methods: Twenty-nine males were assigned to either a moderate or high n-6:n-3 PUFA (9 or 16) diet for 6 weeks. Fasting blood samples were collected at baseline and 6 weeks for analysis of triglycerides, total-, LDL- and HDL- cholesterol, non-esterified fatty acids, glucose, insulin, markers of insulin sensitivity and C-reactive protein. Results: Group mean saturated fatty acid, MUFA, n-6 PUFA and n-3 PUFA on the moderate and high n-6:n-3 PUFA diets were 26 g/d, 43 g/d, 15 g/d, 2 g/d and 25 g/d, 25 g/d, 28 g/d, 2 g/d respectively. A significantly lower total membrane n-3 PUFA and a trend towards lower EPA and DHA levels were observed following the high n-6:n-3 PUFA diet. However no significant effect of treatment on plasma lipids was evident. There was a trend towards a loss of insulin sensitivity on the high n-6:n-3 PUFA diet, with the increase in fasting insulin (P = 0.04) and HOMA IR [(insulin x glucose)/22.5] (P = 0.02) reaching significance. Conclusion: The results of the current study suggest that, within the context of a western diet, it is unlikely that dietary n-6:n-3 PUFA ratio has any major impact on the levels of LC n-3 PUFA in membrane phospholipids or have any major clinically relevant impact on insulin sensitivity and its associated dyslipidaemia.
Resumo:
For the past 20 years, the focuses of public health strategies for reducing the risk of cardiovascular disease (CVD) have been aimed at lowering cholesterol levels. However recent findings have highlighted not only cholesterol but also triacylglycerol as a lipid risk factor for CVD. Dietary strategies which are able to reduce these circulating lipid levels, but which are able to offer long-term efficacy comparable with effective drug treatments, are currently being sought. One dietary strategy that has been proposed to benefit the lipid profile involves the supplementation of the diet with probiotics (Part 1), prebiotics and synbiotics (Part 2), which are mechanisms to improve the health of the host by supplementation and/or fortification of certain health promoting gut bacteria. Probiotics in the form of fermented milk products have been shown to have cholesterol-lowering properties, whereas non-digestible fermentable prebiotics have been shown to reduce triacylglycerol levels in animal studies. However in humans studies, there have been inconsistent findings with respect to changes in lipid levels with both prebiotics and probiotics although on the whole there have been favourable outcomes.
Resumo:
Surface properties of gluten proteins were measured in a dilation test and in compression and expansion tests. The results showed that monomeric gliadin was highly surface active, but polymer glutenin had almost no surface activity. The locations of those proteins in bread dough were investigated using confocal scanning laser microscopy and compared with polar and nonpolar lipids. Added gluten proteins participated in the formation of the film or the matrix, surrounding and separating individual gas cells in bread dough. Gliadin was found in the bulk of dough and gas 'cell walls'. Glutenin was found only in the bulk dough. Polar lipids were present in the protein matrix and in gas 'cell walls', as well as at the surface of some particles, which appeared to be starch granules. However, nonpolar lipid mainly occur-red on the surface of particles, which may be starch granules and small lipid droplets. It is suggested that the locations of gluten proteins in bread dough depends on their surface properties. Polar lipid participates the formation of gluten protein matrix and gas 'cell walls'. Nonpolar lipids may have an effect on the rheological properties by associating with starch granule surfaces and may form lipid droplets. (C) 2004 Published by Elsevier Ltd.
Resumo:
For the past 20 years, the focuses of public health strategies for reducing the risk of cardiovascular disease (CVD) have been aimed at lowering cholesterol levels. However, recent findings have highlighted not only cholesterol but also triacylglycerol as a lipid risk factor for CVD. Dietary strategies which are able to reduce these Circulating lipid levels, but which are able to offer longterm efficacy comparable with effective drug treatments, are currently being sought. One dietary strategy that has been proposed to benefit the lipid profile involves the supplementation of the diet with probiotics (Part 1) prebiotics and synbiotics (Part 2), which are mechanisms to improve the health of the host by supplementation and/or fortification of certain health promoting gut bacteria. Probiotics in the form of fermented milk products have been shown to have cholesterol-lowering properties, whereas non-digestible fermentable prebiotics have been shown to reduce triacylglycerol levels in animal studies, However, in human studies, there have been inconsistent findings with respect to changes in lipid levels with both prebiotics and probiotics although on the whole there have been favourable outcomes.
Resumo:
The present study investigated whether consuming dairy products naturally enriched in cis-9, trans-11 (c9,t11) conjugated linoleic acid (CLA) by modification of cattle feed increases the concentration of this isomer in plasma and cellular lipids in healthy men. The study had a double-blind cross-over design. Subjects aged 34-60 years consumed dairy products available from food retailers for 1 week and then either control (0.17 g c9,t11 CLA/d; 0.31 g trans-vaccenic acid (tVA)/d) or CLA-enriched (1.43 g c9,t11 CLA/d; 4.71 g tVA/d) dairy products for 6 weeks. After 7 weeks washout, this was repeated with the alternate products. c9,t11 CLA concentration in plasma lipids was lower after consuming the control products, which may reflect the two-fold greater c9,t11 CLA content of the commercial products. Consuming the CLA-enriched dairy products increased the c9,t11 CLA concentration in plasma phosphatidylcholine (PC) (38 %; P=0.035), triacylglycerol (TAG) (22 %; P < 0.0001) and cholesteryl esters (205 %; P < 0.0001), and in peripheral blood mononuclear cells (PBMC) (238 %; P < 0.0001), while tVA concentration was greater in plasma PC (65 %; P=0.035), TAG (98 %; P=0.001) and PBMC (84 %; P=0.004). Overall, the present study shows that consumption of naturally enriched dairy products in amounts similar to habitual intakes of these foods increased the c9,t11 CLA content of plasma and cellular lipids.