972 resultados para HR-CS GF AAS
Resumo:
Several distinct, thin (2-7 cm), volcanic sand layers ("ashes") were recovered in the upper portions of Holes 842A and 842B. These holes were drilled 320 km west of the island of Hawaii on the outer side of the arch that surrounds the southern end of the Hawaiian chain. These layers are Pliocene to Pleistocene in age, graded, and contain fresh glass and mineral fragments (mainly olivine, plagioclase, and clinopyroxene) and tests of Pleistocene to Eocene radiolarians. The glass fragments are weakly vesicular and blocky to platy in shape. The glass and olivine fragments from individual layers have large ranges in composition (i.e, larger than expected for a single eruption). These features are inconsistent with an explosive eruption origin for the sands. The only other viable mechanism for transporting these sands hundreds of kilometers from their probable source, the Hawaiian Islands, is turbidity currents. These currents were probably related to several of the giant debris slides that were identified from Gloria sidescan images around the islands. These currents would have run over the ~500-m-high Hawaiian Arch on their way to Site 842. This indicates that the turbidity currents were at least 325 m thick. Paleomagnetic and biostratigraphic data allow the ages of the sands to be constrained and, thus, related to particular Hawaiian debris flows. These correlations were checked by comparing the compositions of the glasses from the sands with those of glasses and rocks from islands with debris flows directed toward Site 842. Good correlations were found for the 110-ka slide from Mauna Loa and the ~1.4-Ma slide from Lanai. The correlation with Kauai is poor, probably because the data base for that volcano is small. The low to moderate sulfur content of the sand glasses indicates that they were derived from moderately to strongly degassed lavas (shallow marine or subaerially erupted), which correlates well with the location of the landslide scars on the flanks of the Hawaiian volcanoes. The glass sands may have been formed by brecciation during the landslide events or spallation and granulation as lava erupted into shallow water.
Resumo:
Preliminary data are presented on dissolved heavy metals in interstitial water samples collected at Site 718 of Ocean Drilling Program Leg 118. The heavy metals at this site are divided into three groups: Group I (B, K, Mn, Ni, Pb, total Si, total P, V) behaves like Mg, which decrease with depth; Group II (Ba, Cu, Sr, Ti) behaves like Ca, which increases with depth; and Group 111 (Cd, Co, Cr, Fe, Na, Mo, Zn) contains metals that are independent of depth. Mg decreases with depth from 50 mM at the seafloor to 21 mM at 900 mbsf. Mn in the sulfate reduction zone (1.0 to 2.8 ppm) is more highly concentrated than in the methane fermentation zone (0.23 to 0.50 ppm), except for Section 116-718-1H-1. A similar behavior is also observed for V and Pb. Ni, B, and K decrease non-uniformly with depth. Ca and Sr increase with depth at the same rates, indicating the dissolution of inorganic calcium carbonate by anaerobic oxidation of organic matter (Sayles, 1981, doi:10.1016/0016-7037(81)90132-0). The distribution of Ba with depth is very similar to those of Ca and Sr. Cu and Ti profiles trend to increase non-uniformly with depth. Fe is constant with depth. The sharp decrease in total silicate concentration at the seafloor probably indicates a decrease in the decomposition of siliceous biological matter (e.g., diatoms) and production of opal. The constant levels of Group 111, except for Na and Fe, may reveal equal sources of supply from surface seawater and the Himalayas over time.