964 resultados para EFFECTIVE DIELECTRIC RESPONSE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the dielectric response of single-walled carbon nanotubes dispersed in poly(vinyl alcohol) matrix by using terahertz time domain spectroscopy. Frequency-dependent real and imaginary parts of the complex dielectric function are measured experimentally in the terahertz regime. The low-frequency phonons of carbon nanotubes, though predicted theoretically, are directly observed for the first time at frequencies 0.26, 0.60, and 0.85 THz. Further, a broad resonance is observed at 1.15 THz associated with the longitudinal acoustic mode of vibration of straight-chain segments of the long polymeric molecules in the film. The latter is observed at 1.24 THz for a pristine polymer film and has been used to derive the size of crystalline lamellae in the film.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Individual carbon nanotubes being substantially smaller than the wavelength of light, are not much responsive to optical manipulation. Here we demonstrate how decorating single-walled carbon nanotubes with palladium particles makes optical trapping and manipulation easier. Palladium decorated nanotubes (Pd/SWNTs) have higher effective dielectric constant and are trapped at much lower laser power level with greater ease. In addition, we report the transportation of Pd/SWNTs using an asymmetric line trap. Using this method carbon nanotubes can be transported in any desired direction with high transportation speed. (c) 2006 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dielectric response of pulsed laser ablated Bi-1 Zn-5(1) Nb-0(1) O-5(7) (BZN) thin films are investigated within the temperature range of 300-660 K and frequency range of 100 Hz-100 kHz Thin film exhibited a strong dielectric relaxation behavior A sharp rise in dielectric constant of BZN thin film at high temperatures is related to disorder in canon and anion lattices Observed dielectric relaxation implies a redistribution of charges within the unit cell This phenomenon suggests that the large change in dielectric constant is due to a dynamical rise of dipolar fluctuations in the unit cell XPS spectra of BZN (A(2)B(2)O(6)O') cubic pyrochlore confirm that the relaxation corresponds to the ionic hopping among the A and O' positions of several local potential minima Barrier height for hopping is distributed between 0 and 0 94 eV The O is spectrum confirms presence of two types of oxygen in BZN thin film The disorder in charge neutralized thin film is correlated with XPS spectra (C) 2010 Elsevier Ltd All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin films of barium strontium titanate (BST) including BaTiO3 and SrTiO3 end members were deposited using the metallo-organic decomposition (MOD) technique. Processing parameters such as nonstoichiometry, annealing temperature and time, film thickness and doping concentration were correlated with the structural and electrical properties of the films. A random polycrystalline structure was observed for all MOD films under the processing conditions in this study. The microstructures of the films showed multi-grains structure through the film thickness. A dielectric constant of 563 was observed for (Ba0.7Sr0.3)TiO3 films rapid thermal annealed at 750 degrees C for 60 s. The dielectric constant increased with annealing temperature and film thickness, while the dielectric constant could reach the bulk values for thicknesses as thin as similar to 0.3 mu m. Nonstoichiometry and doping in the films resulted in a lowering of the dielectric constant. For near-stoichiometric films, a small dielectric dispersion obeying the Curie-von Schweidler type dielectric response was observed. This behavior may be attributed to the presence of the high density of disordered grain boundaries. All MOD processed films showed trap-distributed space-charge limited conduction (SCLC) behavior with slope of similar to 7.5-10 regardless of the chemistry and processing parameter due to the presence of main boundaries through the film thickness. The grain boundaries masked the effect of donor-doping, so that all films showed distributed-trap SCLC behavior without discrete-traps. Donor-doping could significantly improve the time-dependent dielectric breakdown behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping. From the results of charge storage density, leakage current and time-dependent dielectric breakdown behavior, BST thin films are found to be promising candidates for 64 and 256Mb ULSI DRAM applications. (C) 1997 Elsevier Science S.A.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low-temperature dielectric measurements on FeTiMO(6) (M = Ta,Nb,Sb) rutile-type oxides at frequencies from 0.1 Hz to 10 MHz revealed anomalous dielectric relaxations with frequency dispersion. Unlike the high-temperature relaxor response of these materials, the low-temperature relaxations are polaronic in nature. The relationship between frequency and temperature of dielectric loss peak follows T(-1/4) behavior. The frequency dependence of ac conductivity shows the well-known universal dielectric response, while the dc conductivity follows Mott variable range hopping (VRH) behavior, confirming the polaronic origin of the observed dielectric relaxations. The frequency domain analysis of the dielectric spectra shows evidence for two relaxations, with the high-frequency relaxations following Mott VRH behavior more closely. Significantly, the Cr- and Ga-based analogs, CrTiNbO(6) and GaTiMO(6) (M = Ta,Nb), that were also studied, did not show these anomalies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

he standard Gibbs energy of formation of CaCu3Ti4O12 (CCTO) from CaTiO3, CuO and TiO2 has been determined as a function of temperature from 925 to 1350 K using a solid-state electrochemical cell with yttria-stabilized zirconia as the solid electrolyte. Combining this result with information in the literature on CaTiO3, the standard Gibbs energy of formation of CCTO from its component binary oxides, CaO, CuO and TiO2, has been obtained: View the MathML source (CaCu3Ti4O12)/J mol−1 (±600) = −125231 + 6.57 (T/K). The oxygen chemical potential corresponding to the reduction of CCTO to CaTiO3, TiO2 and Cu2O has been calculated from the electrochemical measurements as a function of temperature and compared on an Ellingham diagram with those for the reduction of CuO to Cu2O and Cu2O to Cu. The oxygen partial pressures corresponding to the reduction reactions at any chosen temperature can be read using the nomograms provided on either side of the diagram. The effect of the oxygen partial pressure on phase relations in the pseudo-ternary system CaO–CuO/Cu2O–TiO2 at 1273 K has been evaluated. The phase diagrams allow identification of secondary phases that may form during the synthesis of the CCTO under equilibrium conditions. The secondary phases may have a significant effect on the extrinsic component of the colossal dielectric response of CCTO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A set of symmetric and asymmetric superlattices with ferromagnetic La0.6Sr0.4MnO3 (LSMO) and ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3(PbTiO3) as the constituting layers was fabricated on LaNiO3 coated (100) oriented LaAlO3 substrates using pulsed laser ablation. The crystallinity, and magnetic and ferroelectric properties were studied for all the superlattices. All the superlattice structures exhibited a ferromagnetic behavior over a wide range of temperatures between 10 and 300 K, whereas only the asymmetric superlattices exhibited a reasonably good ferroelectric behavior. Strong influence of an applied magnetic field was observed on the ferroelectric properties of the asymmetric superlattices. Studies were conducted toward understanding the influence of conducting LSMO layers on the electrical responses of the heterostructures. The absence of ferroelectricity in the symmetric superlattice structures has been attributed to their high leakage characteristics. The effect of an applied magnetic field on the ferroelectric properties of the asymmetric superlattices indicated strong influence of the interfaces on the properties. The dominance of the interface on the dielectric response was confirmed by the observed Maxwell-Wagner-type dielectric relaxation in these heterostructures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optical properties and electrical conductivity of highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) are reported as a function of the processing additive conditions. The addition of dimethyl sulfoxide (DMSO) increases the conductivity and modifies the dielectric response as observed from the ellipsometric studies. Also the surface roughness and morphology change with the composition of PEDOT: PSS: DMSO and film deposition conditions. The real part of the dielectric function becomes negative in highly conducting samples, indicating the presence of delocalized charge carriers. The real and imaginary parts of the refractive index were determined as a function of wavelength. The results are consistent with the increase in conductivity upon the addition of DMSO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, impedance and Raman spectroscopy are adopted to probe the nature and extent of disorder to correlate with transport properties in doped polypyrrole (PPy) thin-film devices, synthesized electrochemically at different temperatures. A comparative study of the impedance spectroscopy is performed on PPy devices by both experimental and simulation approach with varying extent of disorder. The impedance measurements of PPy devices are well described by introducing a constant phase element (CPE) (Q) in modified RQ circuit, which accounts for frequency dependence of dielectric response. However, for the PPy grown at lower temperature, an equivalent circuit consisting of two such RQ elements in series is used for successful modelling of the impedance results, which accounts for the depletion region near the electrode. Raman spectroscopy and the de-convoluted spectra are successfully studied to probe the variation in C=C bond stretching and distribution of conjugation length, which relates to disorder in PPy films and the interpretation is well correlated to the impedance results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that graphene, by virtue of its pi-cloud delocalization, has a continuum of electronic energy states and thus behaves nearly like a metal. Instances involving quenching of electronic energy excitation in fluorophores placed in the proximity of graphene sheets are well documented. In this paper, we perform theoretical investigations on the broadening of vibrational and electronic transitions in the vicinity of graphene. We find that for CO vibrations in the vicinity of undoped graphene, the broadening at a distance of 5 angstrom is similar to 0.008 cm(-1)((kappa) over tilde = 2, (kappa) over tilde being the effective dielectric constant). In comparison, for electronic transitions, the linewidth is much larger, being of the order of several cm(-1). Also, if the transition dipole were parallel to the graphene sheet, the linewidth would be reduced to half the value for the case where it is perpendicular, an observation which should be easy to check experimentally for electronic transitions. This should be observable for the f - f transitions (which are rather narrow) of Lanthanide complexes placed within a distance of a few nanometers from a graphene sheet. Further the linewidth would have a (distance)(-4) dependence as one varies the distance from graphene. (C) 2014 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the time of Kirkwood, observed deviations in magnitude of the dielectric constant of aqueous protein solution from that of neat water (similar to 80) and slower decay of polarization have been subjects of enormous interest, controversy, and debate. Most of the common proteins have large permanent dipole moments (often more than 100 D) that can influence structure and dynamics of even distant water molecules, thereby affecting collective polarization fluctuation of the solution, which in turn can significantly alter solution's dielectric constant. Therefore, distance dependence of polarization fluctuation can provide important insight into the nature of biological water. We explore these aspects by studying aqueous solutions of four different proteins of different characteristics and varying sizes, chicken villin headpiece subdomain (HP-36), immunoglobulin binding domain protein G (GB1), hen-egg white lysozyme (LYS), and Myoglobin (MYO). We simulate fairly large systems consisting of single protein molecule and 20000-30000 water molecules (varied according to the protein size), providing a concentration in the range of similar to 2-3 mM. We find that the calculated dielectric constant of the system shows a noticeable increment in all the cases compared to that of neat water. Total dipole moment auto time correlation function of water < dM(W) (0)delta M-W (t) > is found to be sensitive to the nature of the protein. Surprisingly, dipole moment of the protein and total dipole moment of the water molecules are found to be only weakly coupled. Shellwise decomposition of water molecules around protein reveals higher density of first layer compared to the succeeding ones. We also calculate heuristic effective dielectric constant of successive layers and find that the layer adjacent to protein has much lower value (similar to 50). However, progressive layers exhibit successive increment of dielectric constant, finally reaching a value close to that of bulk 4-5 layers away. We also calculate shellwise orientational correlation function and tetrahedral order parameter to understand the local dynamics and structural re-arrangement of water. Theoretical analysis providing simple method for calculation of shellwise local dielectric constant and implication of these findings are elaborately discussed in the present work. (C) 2014 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nature of the stress and electric field driven structural and microstructural transformations in the morphotropic phase boundary (MPB) compositions of the high Curie point piezoelectric system BiScO3-PbTiO3 has been examined by ex situ based techniques. Using a powder poling technique, which is based on the concept of exploiting the irreversible structural change that occurs after the application of a strong electric field and stress independently, it was possible to ascertain that both moderate stress and electric field induce identical structural transformation-a fraction of the monoclinic phase transforms irreversibly to the tetragonal phase. Moreover, analysis of the dielectric response before and after poling revealed a counterintuitive phenomenon of poling induced decrease in the spatial coherence of polarization for compositions around the MPB and not so for compositions far away from the MPB range. Exploiting the greater sensitivity of this technique, we demonstrate that the criticality associated with the interferroelectric transition spans a wider composition range than what is conventionally reported in the literature based on bulk x-ray/neutron powder diffraction techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Local heterogeneity is ubiquitous in natural aqueous systems. It can be caused locally by external biomolecular subsystems like proteins, DNA, micelles and reverse micelles, nanoscopic materials etc., but can also be intrinsic to the thermodynamic nature of the aqueous solution itself (like binary mixtures or at the gas-liquid interface). The altered dynamics of water in the presence of such diverse surfaces has attracted considerable attention in recent years. As these interfaces are quite narrow, only a few molecular layers thick, they are hard to study by conventional methods. The recent development of two dimensional infra-red (2D-IR) spectroscopy allows us to estimate length and time scales of such dynamics fairly accurately. In this work, we present a series of interesting studies employing two dimensional infra-red spectroscopy (2D-IR) to investigate (i) the heterogeneous dynamics of water inside reverse micelles of varying sizes, (ii) supercritical water near the Widom line that is known to exhibit pronounced density fluctuations and also study (iii) the collective and local polarization fluctuation of water molecules in the presence of several different proteins. The spatio-temporal correlation of confined water molecules inside reverse micelles of varying sizes is well captured through the spectral diffusion of corresponding 2D-IR spectra. In the case of supercritical water also, we observe a strong signature of dynamic heterogeneity from the elongated nature of the 2D-IR spectra. In this case the relaxation is ultrafast. We find remarkable agreement between the different tools employed to study the relaxation of density heterogeneity. For aqueous protein solutions, we find that the calculated dielectric constant of the respective systems unanimously shows a noticeable increment compared to that of neat water. However, the `effective' dielectric constant for successive layers shows significant variation, with the layer adjacent to the protein having a much lower value. Relaxation is also slowest at the surface. We find that the dielectric constant achieves the bulk value at distances more than 3 nm from the surface of the protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using spectroscopic ellipsometry (SE), we have measured the optical properties of amorphous carbon (a-C) films ∼ 10-30 nm thick prepared using a filtered beam of C+ ions from a cathodic arc. Such films exhibit a wide range of sp3-bonded carbon contents from 20 to 76 at.% as measured by electron energy loss spectroscopy (EELS), and a range of optical gaps from 0.65 eV (20 at.% sp3 C) to 2.25 eV (76 at.% sp3 C) as measured by SE. SE data from 1.5 to 5 eV have been analyzed by applying the most widely used effective medium theory (EMT) namely that of Bruggeman with isotropic screening, assuming a model of the material as a composite with sp2 C and sp3 C components. Although the atomic fractions of sp3 C deduced by SE with the Bruggeman EMT correlate monotonically with those obtained by EELS, the SE results range from 10 to 25 at.% higher. The possible origins of this discrepancy are discussed within the framework of an optical composite. Improved agreement between SE and EELS is obtained by employing a simple form for the EMT, in which the effective dielectric function is determined as a volume-fraction-weighted average of the dielectric functions of the two components. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The field of plasmonics exploits the unique optical properties of metallic nanostructures to concentrate and manipulate light at subwavelength length scales. Metallic nanostructures get their unique properties from their ability to support surface plasmons– coherent wave-like oscillations of the free electrons at the interface between a conductive and dielectric medium. Recent advancements in the ability to fabricate metallic nanostructures with subwavelength length scales have created new possibilities in technology and research in a broad range of applications.

In the first part of this thesis, we present two investigations of the relationship between the charge state and optical state of plasmonic metal nanoparticles. Using experimental bias-dependent extinction measurements, we derive a potential- dependent dielectric function for Au nanoparticles that accounts for changes in the physical properties due to an applied bias that contribute to the optical extinction. We also present theory and experiment for the reverse effect– the manipulation of the carrier density of Au nanoparticles via controlled optical excitation. This plasmoelectric effect takes advantage of the strong resonant properties of plasmonic materials and the relationship between charge state and optical properties to eluci- date a new avenue for conversion of optical power to electrical potential.

The second topic of this thesis is the non-radiative decay of plasmons to a hot-carrier distribution, and the distribution’s subsequent relaxation. We present first-principles calculations that capture all of the significant microscopic mechanisms underlying surface plasmon decay and predict the initial excited carrier distributions so generated. We also preform ab initio calculations of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We extend these first-principle methods to calculate the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions. Finally, we combine these first-principles calculations of carrier dynamics and optical response to produce a complete theoretical description of ultrafast pump-probe measurements, free of any fitting parameters that are typical in previous analyses.