983 resultados para Cell Cocktail 34-beta-e12 p63


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims/hypothesis

Aggregation of human islet amyloid polypeptide (hIAPP) as islet amyloid is associated with increased beta cell apoptosis and reduced beta cell mass in type 2 diabetes. Islet amyloid formation induces oxidative stress, which contributes to beta cell apoptosis. The cJUN N-terminal kinase (JNK) pathway is a critical mediator of beta cell apoptosis in response to stress stimuli including oxidative stress and exogenous application of hIAPP. We determined whether amyloid formation by endogenous hIAPP mediates beta cell apoptosis through JNK activation and downstream signalling pathways.
Methods

hIAPP transgenic and non-transgenic mouse islets were cultured for up to 144 h in 16.7 mmol/l glucose to induce islet amyloid in the presence or absence of the amyloid inhibitor Congo Red or a cell-permeable JNK inhibitor. Amyloid, beta cell apoptosis, JNK signalling and activation of downstream targets in the intrinsic and extrinsic apoptotic pathways were measured.
Results

JNK activation occurred with islet amyloid formation in hIAPP transgenic islets after 48 and 144 h in culture. Neither high glucose nor the hIAPP transgene alone was sufficient to activate JNK independent of islet amyloid. Inhibition of islet amyloid formation with Congo Red reduced beta cell apoptosis and partially decreased JNK activation. JNK inhibitor treatment reduced beta cell apoptosis without affecting islet amyloid. Islet amyloid increased mRNA levels of markers of the extrinsic (Fas, Fadd) and intrinsic (Bim [also known as Bcl2l11]) apoptotic pathways, caspase 3 and the anti-apoptotic molecule Bclxl (also known as Bcl2l1) in a JNK-dependent manner.
Conclusions/interpretation

Islet amyloid formation induces JNK activation, which upregulates predominantly pro-apoptotic signals in both extrinsic and intrinsic pathways, resulting in beta cell apoptosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abnormal placental development is common in the bovine somatic cell nuclear transfer (SCNT)-derived fetus. In the present study, we characterised the expression of E-cadherin and beta-catenin, structural proteins of adherens junctions, in SCNT gestations as a model for impaired placentation. Cotyledonary tissues were separated from pregnant uteri of SCNT (n - 6) and control pregnancies (n - 8) obtained by artificial insemination. Samples were analysed by western blot, quantitative RT-PCR (qRT-PCR) and immunohistochemistry. Bovine trophectoderm cell lines derived from SCNT and control embryos were analysed to compare with the in utero condition. Although no differences in E-cadherin or beta-catenin mRNA abundance were observed in fetal tissues between the two groups, proteins encoded by these genes were markedly under-expressed in SCNT trophoblast cells. Immunohistochemistry revealed a different pattern of E-cadherin and total beta-catenin localisation in SCNT placentas compared with controls. No difference was observed in subcellular localisation of dephosphorylated active-beta-catenin protein in SCNT tissues compared with controls. However, qRT-PCR confirmed that the wingless (WNT)/beta-catenin signalling pathway target genes CCND1, CLDN1 and MSX1 were downregulated in SCNT placentas. No differences were detected between two groups of bovine trophectoderm cell lines. Our results suggest that impaired expression of E-cadherin and beta-catenin proteins, along with defective beta-catenin signalling during embryo attachment, specifically during placentation, is a molecular mechanism explaining insufficient placentation in the bovine SCNT-derived fetus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High protein content in the diet during childhood and adolescence has been associated to the onset insulin-dependent diabetes mellitus. We investigated the effect of interleukin-1 beta (IL-I beta) on insulin secretion, glucose metabolism, and nitrite formation by islets isolated from rats fed with normal protein (NP, 17%) or low protein (LP, 6%) after weaning. Pretreatment of islets with IL-1 beta for 1 h or 34 h inhibited the insulin secretion induced by glucose in both groups, but it was less marked in LP than in NP group. Islets from LP rats exhibited a decreased IL-1 beta -induced nitric oxide (NO) production, lower inhibition of D-[(UC)-C-14]-glucose oxidation to (CO2)-C-14, and less pronounced effect of IL-1 beta on alpha -ketoisocaproic acid-induced insulin secretion than NP islets. However, when the islets were stimulated by high concentrations of K+ the inhibitory effect of IL-1 beta on insulin secretion was not different between groups. In conclusion, protein restriction protects beta -cells of the deleterious effect of IL-1 beta, apparently, by decreasing NO production. The lower NO generation in islets from protein deprived rats may be due to increased free fatty acids oxidation and consequent alteration in Ca2+ homeostasis. (C) 2001 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fruit bat Artibeus lituratus absorbs large amounts of glucose in short periods of time and maintains normoglycemia even after a prolonged starvation period. Based on these data, we aimed to investigate various aspects related with glucose homeostasis analyzing: blood glucose and insulin levels, intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT), glucose-stimulated insulin secretion (2.8, 5.6 or 8.3 mmol/L glucose) in pancreas fragments, cellular distribution of beta cells, and the amount of pAkt/Akt in the pectoral muscle and liver. Blood glucose levels were higher in fed bats (6.88 +/- 0.5 mmol/L) than fasted bats (4.0 +/- 0.8 mmol/L), whereas insulin levels were similar in both conditions. The values of the area-under-the curve obtained from ipGTT were significantly higher when bats received 2 (5.5-fold) or 3 g/kg glucose (7.5-fold) b.w compared to control (saline). These bats also exhibited a significant decrease of blood glucose values after insulin administration during the iplTT. Insulin secretion from fragments of pancreas under physiological concentrations of glucose (5.6 or 8.3 mmol/L) was similar but higher than in 2.8 mmol/L glucose 1.8- and 2.0-fold, respectively. These bats showed a marked beta-cell distribution along the pancreas, and the pancreatic beta cells are not exclusively located at the central part of the islet. The insulin-induced Akt phosphorylation was more pronounced in the pectoral muscle, compared to liver. The high sensitivity to glucose and insulin, the proper insulin response to glucose, and the presence of an apparent large beta-cell population could represent benefits for the management of high influx of glucose from a carbohydrate-rich meal, which permits appropriate glucose utilization. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to the need to identify new antimutagenic agents and to determine their mechanism of action, the present study examined the mechanism of action of the P-glucan with regard to antimutagenicity using the micronucleus assay in CHO-kl and HTC cell lines. The mutagenicity experiments were performed with three different concentrations of P-glucan (5, 10, and 20 mu g/mL), in wich only the highest dose showed mutagenic activity. In the antimutagenicity experiments, the same concentrations of P-glucan were combined with a mutagenic agent, methylmethane sulfonate, or 2-aminoanthracene, using four different treatment protocols: pre-treatment, simultaneous treatment (simple and with pre-incubation), and post-treatment. The results indicate that the CHO-kl cell line treated with MMS presented a chemopreventive activity for all the doses of P-glucan in the different treatment protocols, except for the lowest dose in post-treatment. When HTC cell line treated with MMS is analysed, a chemopreventive activity can be verified for the highest dose in both pre- and post-treatment. For the simple simultaneous treatment, the three doses demonstrated efficacy, while for the simultaneous treatment with pre-incubation only the intermediate concentration was effective. In HTC treated with 2AA both the lowest dose in the pre-treatment protocol and the post-treatment protocol did not show efficacy in preventing DNA damage. The evaluation of the different protocols and the damage decrease percentages observed suggest that P-glucan has both desmutagenic and bioantimutagenic activity. It is necessary, however, to note that efficacy and mechanism of action are subject to variation when compared the two cell lines, since in HTC, representing a drug-metabolizing system, this substance can show a diminished chemopreventive capacity. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a cross-sectional study, we assessed beta-cell function and insulin sensitivity index (ISI) with hyperglycemic clamps (10 mmol/l) in 24 subjects with impaired fasting glycemia (IFG, fasting plasma glucose [FPG] between 6.1 and 7.0 mmol/l), 15 type 2 diabetic subjects (FPG >7.0 mmol/l), and 280 subjects with normal fasting glycemia (NFG, FPG <6.1 mmol/l). First-phase insulin release (0-10 min) was lower in IFG (geometric mean 541 pmol/l (.) 10 min; 95% confidence interval [CI] 416-702 pmol/l (.) 10 min) and in type 2 diabetes (geometric mean 376 pmol/l (.) 10 min; 95% CI 247-572 pmol/l (.) 10 min) than NFG (geometric mean 814 pmol/l (.) 10 min; 95% CI 759-873 pmol/l (.) 10 min) (P < 0.001). Second-phase insulin secretion (140-180 min) was also lower in IFG (geometric mean 251 pmol/l; 95% CI 198-318 pmol/l; P = 0.026) and type 2 diabetes (geometric mean 157 pmol/l; 95% CI 105-235 pmol/l; P < 0.001) than NFG (geometric mean 295 pmol/l; 95% CI 276-315 pmol/l): IFG and type 2 diabetic subjects had a lower ISI (0.15 +/- 0.02 and 0.16 +/- 0.02 mumol/kg fat-free mass [FFM]/min/ pmol/l, respectively) than NFG (0.24 +/- 0.01 mumol/kg FFM/min/pmol/l, P < 0.05). We found a stepwise decline in first-phase (and second-phase) secretion in NFG subjects with progressive decline in oral glucose tolerance (P < 0.05). IFG subjects with impaired glucose tolerance (IGT) had lower first-phase secretion than NFG subjects with IGT (P < 0.02), with comparable second-phase secretion and ISI. NFG and IFG subjects with a diabetic glucose tolerance (2-h glucose >11.1 mmol/l) had a lower ISI than their respective IGT counterparts (P < 0.05). We conclude that the early stages of glucose intolerance are associated with disturbances in beta-cell function, while insulin resistance is seen more markedly in later stages.