160 resultados para Bifidobacteria


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to compare the effects of the mixture of Lactobacillus delbrueckii subsp. rhamnosus strain GG, Bifidobacterium lactis Bb12, and inulin on intestinal populations of lactobacilli, bifidobacteria, and enterobacteria in adult and elderly rats fed the same (in quality and quantity) diet. The portal plasma levels of two neuropeptides, neuropeptide Y (NPY) and peptide YY (PYY), were also evaluated to assess the physiological consequences of the synbiotic treatment for the gastrointestinal (GI) tracts of rats of different ages. Adult (n = 24) and elderly (n = 24) male rats were fed the AIN-93 M maintenance diet. After 2 weeks of adaptation, the diet of 12 rats of each age group was supplemented with 8% inulin and with strains GG and Bb12 to provide 2.2 x 10(9) CFU of each strain g(-1) of the diet. Blood and different regions of the GI tract were sampled from all rats after 21 days of the treatment. Treatment with the mixture of strain GG, strain BB12, and inulin induced significantly different changes in the numbers of lactobacilli, bifidobacteria, and enterobacteria of the stomach, small intestine, cecum, and colon microflora. Moreover, the GG, BB12, and inulin mixture increased the concentrations of NPY and PYY for adult rats. For the elderly animals, the PYY concentration was not changed, while the NPY concentration was decreased by treatment with the GG, BB12, and inulin mixture. The results of the present study indicate that the physiological status of the GI tract, and not just diet, has a major role in the regulation of important groups of the GI bacteria community, since even the outcome of the dietary modification with synbiotics depends on the ages of the animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interdigestive intestinal motility, and especially phase III of the migrating myoelectric/motor complex (MMC), is responsible for intestinal clearance and plays an important role in prevention of bacterial overgrowth and translocation in the gut. Yet previous results from gnotobiotic rats have shown that intestinal microflora can themselves affect the characteristics of the myoelectric activity of the gut during the interdigestive state. Given that the composition of the intestinal microflora can be altered by dietary manipulations, we investigated the effect of supplementation of the diet with synbiotics on intestinal microflora structure and the duodenojejunal myoelectric activity in the rat. To reduce animal distress caused by restraint and handling, which can itself affect GI motility, we applied radiotelemetry for duodenojejunal EMG recordings in conscious, freely moving rats. Thirty 16-month-old Spraque-Dawley rats were used. The diet for 15 rats (E group) was supplemented with chicory inulin, Lactobacillus rhamnosus and Bifidobacterium lactis. The remaining 15 rats were fed control diet without supplements (C group). Three rats from each group were implanted with three bipolar electrodes positioned at 2, 14 and 28 cm distal to the pylorus. After recovery, two 6 h recordings of duodenojejunal EMG were carried out on each operated rat. Subsequently, group C rats received feed supplements and group E rats received only control diet for 1 week, and an additional two 6 h recordings were carried out on each of these rats. Non-operated C and E rats were killed and samples of GI tract were collected for microbiological analyses. Supplementation of the diet with the pro- and prebiotics mixture increased the number of bifidobacteria, whereas it decreased the number of enterobacteria in jejunum, ileum, caecum and colon. In both caecum and colon, the dietary supplementation increased the number of total anaerobes and lactobacilli. Treatment with synbiotics increased occurrence of phase III of the MMC at all three levels of the small intestine. The propagation velocity of phase III in the whole recording segment was also increased from 3.7 +/- 0.2 to 4.4 +/- 0.2 cm min(-1) by dietary treatment. Treatment with synbiotics increased the frequency of response potentials of the propagated phase III of the MMC at both levels of the jejunum, but not in the duodenum. In both parts of the jejunum, the supplementation of the diet significantly decreased the duration of phase II of the MMC, while it did not change the duration of phase I and phase III. Using the telemetry technique it was demonstrated that changes in the gastrointestinal microflora exhibited an intestinal motility response and, more importantly, that such changes can be initiated by the addition of synbiotics to the diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Prebiotics are food ingredients, usually non-digestible oligosaccharides, that are selectively fermented by populations of beneficial gut bacteria. Endoxylanases, altering the naturally present cereal arabinoxylans, are commonly used in the bread industry to improve dough and bread characteristics. Recently, an in situ method has been developed to produce arabinoxylan-oligosaccharides (AXOS) at high levels in breads through the use of a thermophilic endoxylanase. AXOS have demonstrated potentially prebiotic properties in that they have been observed to lead to beneficial shifts in the microbiota in vitro and in murine, poultry and human studies. METHODS: A double-blind, placebo controlled human intervention study was undertaken with 40 healthy adult volunteers to assess the impact of consumption of breads with in situ produced AXOS (containing 2.2 g AXOS) compared to non-endoxylanase treated breads. Volatile fatty acid concentrations in faeces were assessed and fluorescence in situ hybridisation was used to assess changes in gut microbial groups. Secretory immunoglobulin A (sIgA) levels in saliva were also measured. RESULTS: Consumption of AXOS-enriched breads led to increased faecal butyrate and a trend for reduced iso-valerate and fatty acids associated with protein fermentation. Faecal levels of bifidobacteria increased following initial control breads and remained elevated throughout the study. Lactobacilli levels were elevated following both placebo and AXOS-breads. No changes in salivary secretory IgA levels were observed during the study. Furthermore, no adverse effects on gastrointestinal symptoms were reported during AXOS-bread intake. CONCLUSIONS: AXOS-breads led to a potentially beneficial shift in fermentation end products and are well tolerated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bifidobacterium longum bv. infantis CCUG 52486 was originally isolated from healthy elderly subjects and demonstrated to have particular ecological fitness and anti-pathogenic effects. Bifidobacteria are commonly associated with immunomodulatory properties, especially in older people, but this strain has not been investigated for effects on immune function. This study aimed to explore the immunomodulatory effects of this novel probiotic, compared with three commercial strains, B. longum SP 07/3, L. rhamnosus GG (L.GG) and L. casei Shirota (LcS). Human peripheral blood mononuclear cells (PBMCs) were isolated from fasting blood of young or older volunteers and exposed to probiotic strains or Con A. NK activity and activation, and cytokine release were enhanced by all probiotics with strain-specificities. The effect of B. infantis on NK activity was influenced by ageing. Except for L.GG, probiotics increased IFN-γ production to a much greater degree in young subjects, and increased IL-6 production to a much greater degree in older subjects. Based on IL-10/IL-12 ratios, B. infantis resulted in the most anti-inflammatory profile of all of the probiotics. These results suggest that B. infantis CCUG 52486 has strong immunomodulatory potential compared with well-known commercial strains, and that the immune response to probiotics may be influenced by ageing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity has become a major global health problem. Recently, attention has focused on the benefits of fermentable carbohydrates on modulating metabolism. Here, we take a system approach to investigate the physiological effects of supplementation with oligofructose-enriched inulin (In). We hypothesize that supplementation with this fermentable carbohydrate will not only lead to changes in body weight and composition, but also to modulation in neuronal activation in the hypothalamus. Male C57BL/6 mice were maintained on a normal chow diet (control) or a high fat (HF) diet supplemented with either oligofructose-enriched In or corn starch (Cs) for 9 weeks. Compared to HF+Cs diet, In supplementation led to significant reduction in average daily weight gain (mean ± s.e.m.: 0.19 ± 0.01 g vs. 0.26 ± 0.02 g, P < 0.01), total body adiposity (24.9 ± 1.2% vs. 30.7 ± 1.4%, P < 0.01), and lowered liver fat content (11.7 ± 1.7% vs. 23.8 ± 3.4%, P < 0.01). Significant changes were also observed in fecal bacterial distribution, with increases in both Bifidobacteria and Lactobacillius and a significant increase in short chain fatty acids (SCFA). Using manganese-enhanced MRI (MEMRI), we observed a significant increase in neuronal activation within the arcuate nucleus (ARC) of animals that received In supplementation compared to those fed HF+Cs diet. In conclusion, we have demonstrated for the first time, in the same animal, a wide range of beneficial metabolic effects following supplementation of a HF diet with oligofructose-enriched In, as well as significant changes in hypothalamic neuronal activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: We assessed whether a wheat bran extract containing arabino-xylan-oligosaccharide (AXOS) elicited a prebiotic effect and influenced other physiologic parameters when consumed in ready-to-eat cereal at two dose levels. Methods: This double-blind, randomized, controlled, crossover trial evaluated the effects of consuming AXOS at 0 (control), 2.2, or 4.8 g/d as part of ready-to-eat cereal for 3 wk in 55 healthy men and women. Fecal microbial levels, postprandial serum ferulic acid concentrations, and other physiologic parameters were assessed at the beginning and end of each condition. Results: The median bifidobacteria content of stool samples (log10/grams of dry weight [DW]) was found to be higher in the subjects consuming the 4.8-g/d dose (10.03) than in those consuming 2.2 g/d (9.93) and control (9.84, P < 0.001). No significant changes in the populations of other fecal microbes were observed, indicating a selective increase in fecal bifidobacteria. Postprandial ferulic acid was measured at 120 min at the start and end of each 3-wk treatment period in subjects at least 50 y old (n = 37) and increased in a dose-dependent manner (end-of-treatment values 0.007, 0.050, and 0.069 μg/mL for the control, AXOS 2.2 g/d, and AXOS 4.8 g/d conditions, respectively, P for trend < 0.001). Conclusion: These results indicate that AXOS has prebiotic properties, selectively increasing fecal bifidobacteria, and increases postprandial ferulic acid concentrations in a dose-dependent manner in healthy men and women.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global population is becoming increasingly older presenting medical and economic challenges to society. One factor associated with the aging process is immunosenescence, which may be defined as the decline in immunity with age, and represents a potential causative factor for many age related illnesses. The profile of the gut microbiota is also known to alter with aging and these changes have been linked the declines in the immunity observed in immunosenescence. For example, above the age of 60 years populations of bifidobacteria have been observed to decrease markedly, leading to a reduction in the inhibition of the growth of some pathogens and potentially an increase in the susceptibility to infections. As such, an interest exists in attempting to reverse their decline in elderly individuals, through the use of both probiotics and prebiotics. Both approaches have shown to be encouraging in altering microbiota profiles beneficially and in reducing immunosenescence by reducing the colonisation potential of pathogens and counteracting chronic inflammation. The current review will give an overview of the process of immunosenescence and its role in disease, detail how the microbiota are involved in its progression and highlight data suggesting that pre- and probiotics may counteract these age-related events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linear Inulin type fructan (ITF) prebiotics have a putative role in the prevention of colorectal cancer, whereas relatively little is known about branched fructans. This study aims to investigate the fermentation properties and potential prebiotic activity of branched fructans derived from Agave angustifolia Haw, using the Simulator of Human Intestinal Microbial Ecosystem (SHIME) model. The proximal, transverse and distal vessels were used to investigate fructan fermentation throughout the colon and to assess the alterations of the microbial composition and fermentation metabolites (short chain fatty acids and ammonia). The influence on bioactivity of the fermentation supernatant was assessed by MTT, Comet and transepithelial electrical resistance (TER), respectively. Addition of Agave fructan to the SHIME model significantly increased (P<0.05), bifidobacteria populations (proximal and transverse), SCFA concentrations (proximal, transverse and distal) and decreased ammonia concentrations in the distal vessel. Furthermore, the fermentation supernatant significantly (P<0.05) increased the TER of a Caco-2 cell monolayer (%) and decreased fluorescein-based paracellular flux, suggesting enhanced barrier function and reduced epithelial barrier permeability (proximal and distal vessel). While cytotoxicity and genotoxicity remained unaltered in response to the presence of Agave fructans. To conclude, branched Agave fructans show indications of prebiotic activity, particularly in relation to colon health by exerting a positive influence on gut barrier function, an important aspect of colon carcinogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the exceptions of the bifidobacteria, propionibacteria and coriobacteria, the Actinobacteria associated with the human gastrointestinal tract have received little attention. This has been due to the seeming absence of these bacteria from most clone libraries. In addition, many of these bacteria have fastidious growth and atmospheric requirements. A recent cultivation-based study has shown that the Actinobacteria of the human gut may be more diverse than previously thought. The aim of this study was to develop a denaturing gradient gel electrophoresis (DGGE) approach for characterizing Actinobacteria present in faecal samples. Amount of DNA added to the Actinobacteria-specific PCR used to generate strong PCR products of equal intenstity from faecal samples of five infants, nine adults and eight elderly adults was anti-correlated with counts of bacteria obtained using fluorescence in situ hybridization probe HGC69A. A nested PCR using Actinobacteria-specific and universal PCR-DGGE primers was used to generate profiles for the Actinobacteria. Cloning of sequences from the DGGE bands confirmed the specificity of the Actinobacteria-specific primers. In addition to members of the genus Bifidobacterium, species belonging to the genera Propionibacterium, Microbacterium, Brevibacterium, Actinomyces and Corynebacterium were found to be part of the faecal microbiota of healthy humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Public health strategies for reducing the risk of coronary heart disease have focused on lowering plasma lipids, particularly cholesterol levels, with recent studies also highlighting triacylglycerol (TAG) as an important modifiable risk factor. One approach is to supplement the diet with probiotics, prebiotics or synbiotics. Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Putative health benefits include improved resistance to gastrointestinal infections, reduction in lipid levels and stimulation of the immune system. Prebiotics are selectively fermented dietary components that are aimed at improving host health through selective fermentation by the gut microbiota, such as bifidobacteria and lactobacilli. Animal studies have shown prebiotics to markedly reduce circulating TAG and to a lesser extent cholesterol concentrations, with favourable but inconsistent findings with respect to changes in lipid levels in human studies. Here we provide an overview of the effects, and possible mechanisms, of probiotics, prebiotics and synbiotics (combination of a probiotic and prebiotic) on circulating lipeamia in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each human body plays host to a microbial population which is both numerically vast (at around 1014 microbial cells) and phenomenally diverse (over 1,000 species). The majority of the microbial species in the gut have not been cultured but the application of culture-independent approaches for high throughput diversity and functionality analysis has allowed characterisation of the diverse microbial phylotypes present in health and disease. Studies in monozygotic twins, showing that these retain highly similar microbiota decades after birth and initial colonisation, are strongly indicative that diversity of the microbiome is host-specific and affected by the genotype. Microbial diversity in the human body is reflected in both richness and evenness. Diversity increases steeply from birth reaching its highest point in early adulthood, before declining in older age. However, in healthy subjects there appears to be a core of microbial phylotypes which remains relatively stable over time. Studies of individuals from diverse geopraphies suggest that clusters of intestinal bacterial groups tend to occur together, constituting ‘enterotypes’. So variation in intestinal microbiota is stratified rather than continuous and there may be a limited number of host/microbial states which respond differently to environmental influences. Exploration of enterotypes and functional groups may provide biomarkers for disease and insights into the potential for new treatments based on manipulation of the microbiome. In health, the microbiota interact with host defences and exist in harmonious homeostasis which can then be disturbed by invading organisms or when ‘carpet bombing’ by antibiotics occurs. In a portion of individuals with infections, the disease will resolve itself without the need for antibiotics and microbial homeostasis with the host’s defences is restored. The administration of probiotics (live microorganisms which when administered in adequate amounts confer a health benefit on the host) represents an artificial way to enhance or stimulate these natural processes. The study of innate mechanisms of antimicrobial defence on the skin, including the production of numerous antimicrobial peptides (AMPs), has shown an important role for skin commensal organisms. These organisms may produce AMPs, and also amplify the innate immune responses to pathogens by activating signalling pathways and processing host produced AMPs. Research continues into how to enhance and manipulate the role of commensal organisms on the skin. The challenges of skin infection (including diseases caused by multiply resistant organisms) and infestations remain considerable. The potential to re-colonise the skin to replace or reduce pathogens, and exploring the relationship between microbiota elsewhere and skin diseases are among a growing list of research targets. Lactobacillus species are among the best known ‘beneficial’ bacterial members of the human microbiota. Of the approximately 120 species known, about 15 are known to occur in the human vagina. These organisms have multiple properties, including the production of lactic acid, hydrogen peroxide and bacteriocins, which render the vagina inhospitable to potential pathogens. Depletion of the of the normal Lactobacillus population and overgrowth of vaginal anaerobes, accompanied by the loss of normal vaginal acidity can lead to bacterial vaginosis – the commonest cause of abnormal vaginal discharge in women. Some vaginal anaerobes are associated with the formation of vaginal biofilms which serve to act as a reservoir of organisms which persists after standard antibiotic therapy of bacterial vaginosis and may help to account for the characteristically high relapse rate in the condition. Administration of Lactobacillus species both vaginally and orally have shown beneficial effects in the treatment of bacterial vaginosis and such treatments have an excellent overall safety record. Candida albicans is a frequent coloniser of human skin and mucosal membranes, and is a normal part of the microbiota in the mouth, gut and vagina. Nevertheless Candida albicans is the most common fungal pathogen worldwide and is a leading cause of serious and often fatal nosocomial infections. What turns this organism from a commensal to a pathogen is a combination of increasing virulence in the organism and predisposing host factors that compromise immunity. There has been considerable research into the use of probiotic Lactobacillus spp. in vaginal candidiasis. Studies in reconstituted human epithelium and monolayer cell cultures have shown that L. rhamnosus GG can protect mucosa from damage caused by Candida albicans, and enhance the immune responses of mucosal surfaces. Such findings offer the promise that the use of such probiotic bacteria could provide new options for antifungal therapy. Studies of changes of the human intestinal microbiota in health and disease are complicated by its size and diversity. The Alimentary Pharmabiotic Centre in Cork (Republic of Ireland) has the mission to ‘mine microbes for mankind’ and its work illustrates the potential benefits of understanding the gut microbiota. Work undertaken at the centre includes: mapping changes in the microbiota with age; studies of the interaction between the microbiota and the gut; potential interactions between the gut microbiota and the central nervous system; the potential for probiotics to act as anti-infectives including through the production of bacteriocins; and the characterisation of interactions between gut microbiota and bile acids which have important roles as signalling molecules and in immunity. The important disease entity where the role of the gut microbiota appears to be central is the Irritable Bowel Syndrome (IBS). IBS patients show evidence of immune activation, impaired gut barrier function and abnormal gut microbiota. Studies with probiotics have shown that these organisms can exert anti-inflammatory effects in inflammatory bowel disease and may strengthen the gut barrier in IBS of the diarrhoea-predominant type. Formal randomised trials of probiotics in IBS show mixed results with limited benefit for some but not all. Studies confirm that administered probiotics can survive and temporarily colonise the gut. They can also stimulate the numbers of other lactic acid bacilli in the gut, and reduce the numbers of pathogens. However consuming live organisms is not the only way to influence gut microbiota. Dietary prebiotics are selectively fermented ingredients that can change the composition and/or activity of the gastrointestinal microbiota in beneficial ways. Dietary components that reach the colon, and are available to influence the microbiota include poorly digestible carbohydrates, such as non-starch polysaccharides, resistant starch, non-digestible oligosaccharides (NDOs) and polyphenols. Mixtures of probiotic and prebiotic ingredients that can selectively stimulate growth or activity of health promoting bacteria have been termed ‘synbiotics’. All of these approaches can influence gut microbial ecology, mainly to increase bifidobacteria and lactobacilli, but metagenomic approaches may reveal wider effects. Characterising how these changes produce physiological benefits may enable broader use of these tactics in health and disease in the future. The current status of probiotic products commercially available worldwide is less than ideal. Prevalent problems include misidentification of ingredient organisms and poor viability of probiotic microorganisms leading to inadequate shelf life. On occasions these problems mean that some commercially available products cannot be considered to meet the definition of a probiotic product. Given the potential benefits of manipulating the human microbiota for beneficial effects, there is a clear need for improved regulation of probiotics. The potential importance of the human microbiota cannot be overstated. ‘We feed our microbes, they talk to us and we benefit. We just have to understand and then exploit this.’ (Willem de Vos).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Probiotics are currently being investigated for prevention of infections caused by enteric pathogens. The aim of this in vitro study was to evaluate the influence of three single probiotics: Lactobacillus casei NCIMB 30185 (PXN 37), Lactobacillus acidophilus NCIMB 30184 (PXN 35), Bifidobacterium breve NCIMB 30180 (PXN 25) and a probiotic mixture containing the above strains plus twelve other strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera on the survival of Salmonella Typhimurium and Clostridium difficile using pH-controlled anaerobic batch cultures containing mixed fecal bacteria. Changes in relevant bacterial groups and effects of probiotic addition on survival of the two pathogens were assessed over 24 h. Quantitative analysis of bacterial populations revealed that there was a significant increase in lactobacilli and/or bifidobacteria numbers, depending on probiotic addition, compared with the control (no added probiotic). There was also a significant reduction in S. Typhimurium and C. difficile numbers in the presence of certain probiotics compared with controls. Of the probiotic treatments, two single strains namely L. casei NCIMB 30185 (PXN 37), and B. breve NCIMB 30180 (PXN 25) were the most potent in reducing the numbers of S. Typhimurium and C. difficile. In addition, the supplementation with probiotics into the systems influenced some fermentations parameters. Acetate was found in the largest concentrations in all vessels and lactate and formate were generally detected in higher amounts in vessels with probiotic addition compared to controls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microbiota of the human gastrointestinal tract plays a key role in nutrition and health. Through the process of fermentation, gut bacteria metabolize various substrates (principally dietary components) to end products such as short-chain fatty acids and gases. This anaerobic metabolism is thought to contribute positively toward host daily energy requirements. However, under certain circumstances, the fermentative process may produce undesirable metabolites. This may cause the onset of gut disorders that can be manifest through both acute and chronic conditions. Moreover, the gut flora may become contaminated by transient pathogens that serve further to upset the normal community structure. There has been a recent increase in the use of dietary components that help to maintain, or even improve, the gut microflora "balance." Probiotics are live microbial feed supplements added to appropriate food vehicles (usually fermented milks), whereas prebiotics are dietary carbohydrates that have a selective metabolism in the colon and serve to increase numbers of bacteria seen as desirable. Because of their purported health-promoting properties, lactic acid-producing bacteria, including bifidobacteria, are the usual target organisms. The market value and biological potential of both approaches are enormous. This article will summarize how efficacious types can be identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Certain milk factors can promote the growth of a host-friendly gastrointestinal microflora. This may explain why breast-fed infants experience fewer intestinal infections than their formula-fed counterparts. The effect of formula supplementation with two such factors was investigated in this study. Infant faecal specimens were used to ferment formulas supplemented with glycomacropeptide and α-lactalbumin in a two-stage compound continuous culture model. Bacteriology was determined by fluorescence in situ hybridisation. Vessels that contained breast milk as well as α-lactalbumin and glycomacropeptide had stable counts of bifidobacteria while lactobacilli increased significantly only in vessels with breast milk. Bacteroides, clostridia and Escherichia coli decreased significantly in all runs. Acetate was the principal acid found along with high amounts of propionate and lactate. Supplementation of infant formulas with appropriate milk proteins may be useful in simulating the beneficial bacteriological effects of breast milk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential prebiotic effect of the fructo-trisaccharide, neokestose, on intestinal bacteria was investigated. Bifidobacterium sp. utilized neokestose to a greater extend and produced more biomass from neokestose than facultative anaerobes under anaerobic conditions in batch culture. Lactobacillus salivarius utilized glucose but negligible amounts of neokestose. L. salivarius and the facultative anaerobes produced significantly more biomass from glucose than from neokestose, whereas the biomass yields obtained with bifidobacteria on neokestose and glucose, respectively, were not significantly different. Static batch cultures inoculated with faeces supported the prebiotic effect of neokestose, which had been observed in the pure culture investigations. Bifidobacteria and lactobacilli were increased while potentially detrimental coliforms, clostridia and bacteroides, decreased after 24 h fermentation with neokestose. In addition, this effect was more pronounced with neokestose than with a commercial prebiotic fructo-oligosaccharide. It was concluded that neokestose has potential as a novel bifidogenic substance and that it might have advantages over the commercially available sources currently used.