991 resultados para ABERRANT GLYCOSYLATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we tested the hypothesis that the glycosylation of the pathogenic isoform of the prion protein (PrP(Sc)) might encode the selective neurotropism of prion strains. We prepared unglycosylated cellular prion protein (PrP(C)) substrate molecules from normal mouse brain by treatment with PNGase F and used reconstituted serial protein cyclic misfolding amplification reactions to produce RML and 301C mouse prions containing unglycosylated PrP(Sc) molecules. Both RML- and 301C-derived prions containing unglycosylated PrP(Sc) molecules were infectious to wild-type mice, and neuropathological analysis showed that mice inoculated with these samples maintained strain-specific patterns of PrP(Sc) deposition and neuronal vacuolation. These results show that PrP(Sc) glycosylation is not necessary for strain-dependent prion neurotropism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We aimed to investigate whether aberrant motor behavior in schizophrenia was associated with structural alterations in the motor system. Whole brain voxel based morphometry of patients with different severity of motor symptoms identified altered gray matter volume in the supplementary motor area (SMA), a key region of the motor system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient receptor potential channel, TRPM4, and its closest homolog, TRPM5, are non-selective cation channels that are activated by an increase in intracellular calcium. They are expressed in many cell types, including neurons and myocytes. Although the electrophysiological and pharmacological properties of these two channels have been previously studied, less is known about their regulation, in particular their post-translational modifications. We, and others, have reported that wild-type (WT) TRPM4 channels expressed in HEK293 cells, migrated on SDS-PAGE gel as doublets, similar to other ion channels and membrane proteins. In the present study, we provide evidence that TRPM4 and TRPM5 are each N-linked glycosylated at a unique residue, Asn(992) and Asn(932), respectively. N-linked glycosylated TRPM4 is also found in native cardiac cells. Biochemical experiments using HEK293 cells over-expressing WT TRPM4/5 or N992Q/N932Q mutants demonstrated that the abolishment of N-linked glycosylation did not alter the number of channels at the plasma membrane. In parallel, electrophysiological experiments demonstrated a decrease in the current density of both mutant channels, as compared to their respective controls, either due to the Asn to Gln mutations themselves or abolition of glycosylation. To discriminate between these possibilities, HEK293 cells expressing TRPM4 WT were treated with tunicamycin, an inhibitor of glycosylation. In contrast to N-glycosylation signal abolishment by mutagenesis, tunicamycin treatment led to an increase in the TRPM4-mediated current. Altogether, these results demonstrate that TRPM4 and TRPM5 are both N-linked glycosylated at a unique site and also suggest that TRPM4/5 glycosylation seems not to be involved in channel trafficking, but mainly in their functional regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136) in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s) and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmission of African trypanosomes by tsetse flies requires that the parasites migrate out of the midgut lumen and colonise the ectoperitrophic space. Early procyclic culture forms correspond to trypanosomes in the lumen; on agarose plates they exhibit social motility, migrating en masse as radial projections from an inoculation site. We show that an Rft1-/- mutant needs to reach a greater threshold number before migration begins, and that it forms fewer projections than its wild-type parent. The mutant is also up to 4 times less efficient at establishing midgut infections. Ectopic expression of Rft1 rescues social motility defects and restores the ability to colonise the fly. These results are consistent with social motility reflecting movement to the ectoperitrophic space, implicate N-glycans in the signalling cascades for migration in vivo and in vitro, and provide the first evidence that parasite-parasite interactions determine the success of transmission by the insect host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used three beta-thalassemic mutations, IVS2-654, -705 and -745, that create aberrant 5' splice sites (5' ss) and activate a common cryptic 3' ss further upstream in intron 2 of the human beta-globin gene to optimize a generally applicable exon-skipping strategy using antisense derivatives of U7 small nuclear RNA (snRNA). Introducing a modified U7 snRNA gene carrying an antisense sequence against the cryptic 3' ss into cultured cells expressing the mutant beta-globin genes, restored correct beta-globin mRNA splicing for all three mutations, but the efficiency was much weaker for IVS2-654 than for the other mutations. The length of antisense sequence influenced the efficiency with an optimum of approximately 24 nucleotides. Combining two antisense sequences directed against different target sites in intron 2, either on separate antisense RNAs or, even better, on a single U7 snRNA, significantly enhanced the efficiency of splicing correction. One double-target U7 RNA was expressed on stable transformation resulting in permanent and efficient suppression of the IVS2-654 mutation and production of beta-globin. These results suggest that forcing the aberrant exon into a looped secondary structure may strongly promote its exclusion from the mRNA and that this approach may be used generally to induce exon skipping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS) is an adult onset progressive motor neuron disease with no cure. Transgenic mice overexpressing familial ALS associated human mutant SOD1 are a commonly used model for examining disease mechanisms. Presently, it is well accepted that alterations in motor neuron excitability and spinal circuits are pathological hallmarks of ALS, but the underlying molecular mechanisms remain unresolved. Here, we sought to understand whether the expression of mutant SOD1 protein could contribute to altering processes governing motor neuron excitability. We used the conformation specific antibody B8H10 which recognizes a misfolded state of SOD1 (misfSOD1) to longitudinally identify its interactome during early disease stage in SOD1G93A mice. This strategy identified a direct isozyme-specific association of misfSOD1 with Na+/K+ATPase-α3 leading to the premature impairment of its ATPase activity. Pharmacological inhibition of Na+/K+ATPase-α3 altered glutamate receptor 2 expression, modified cholinergic inputs and accelerated disease pathology. After mapping the site of direct association of misfSOD1 with Na+/K+ATPase-α3 onto a 10 amino acid stretch that is unique to Na+/K+ATPase-α3 but not found in the closely related Na+/K+ATPase-α1 isozyme, we generated a misfSOD1 binding deficient, but fully functional Na+/K+ATPase-α3 pump. Adeno associated virus (AAV)-mediated expression of this chimeric Na+/K+ATPase-α3 restored Na+/K+ATPase-α3 activity in the spinal cord, delayed pathological alterations and prolonged survival of SOD1G93A mice. Additionally, altered Na+/K+ATPase-α3 expression was observed in the spinal cord of individuals with sporadic and familial ALS. A fraction of sporadic ALS cases also presented B8H10 positive misfSOD1 immunoreactivity, suggesting that similar mechanism might contribute to the pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of the human genome has revealed that more than 74% of human genes undergo alternative RNA splicing. Aberrations in alternative RNA splicing have been associated with several human disorders, including cancer. ^ We studied the aberrant expression of alternative RNA splicing isoforms of the Fibroblast Growth Factor Receptor 1 (FGFR1) gene in a human glioblastoma cancer model. Normal glial cells express the FGFR1α, which contains three extracellular domains. In tumors the most abundant isoform is the FGFR1β, which lacks the first extracellular domain due to the skipping of a single exon, termed alpha. The skipping of the α-exon is regulated by two intronic silencing sequences within the precursor mRNA. Since we observed no mutations on these elements in tumor cells, we hypothesized that the over-expression of regulatory proteins that recognize these sequences is responsible for the aberrant expression of splicing isoforms. Hence, we blocked the formation of protein complexes on the ISS using antisense RNA oligonucleotides in vitro. We also evaluated the impact of the ISS antisense oligonucleotides on the endogenous FGFR1 splicing, in a glioblastoma cell model. By targeting intronic regulatory elements we were able to increase the level of alpha exon inclusion up to 90% in glioblastoma cells. The effect was dose dependent, sequence specific and reproducible in glioblastoma and other cancer cells, which also exhibit an alpha exon skipping phenotype. Targeting FGFR1 endogenous ISS1 and ISS2 sequences did not have an additive or synergistic effect, which suggest a regulatory splicing mechanism that requires the interaction of complexes formed on these elements. An increase in the levels of the FGFR1α isoform resulted in a reduction in cell invasiveness. Also, a significant increase in the levels of caspase 3/7 activities, which is indicative of an elevation in apoptosis levels, suggests that expression of FGFR1β might be relevant for tumor survival. These studies demonstrate that it is possible to prevent aberrant expression of exon skipping events through the targeting of intronic regulatory elements, providing an important new therapeutic tool for the correction of human disease caused by alternative RNA splicing. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cattle are the species used most frequently for the development of assisted reproductive technologies, such as nuclear transfer. Cattle cloning can be performed by a large number of laboratories around the world, and the efficiency of nuclear transfer in cattle is the highest among all species in which successful cloning has been achieved. However, an understanding of the expression of imprinted genes in this important species is lacking. In the present study, real time reverse transcription polymerase chain reaction (RT-PCR) was utilized to quantify the expression of the bovine Igf2, Igf2r, and H19 genes in eight major organs (brain, bladder, heart, kidney, liver, lung, spleen, and thymus) of somatic cell cloned calves that died shortly after birth, in three tissues (skin, muscle, and liver) of healthy clones that survived to adulthood, and in corresponding tissues of control animals from natural reproduction. We found that, deceased bovine cloned calves exhibited abnormal expression of all three genes studied in various organs. Large variations in the expression levels of imprinted genes were also seen among these clones, which were produced from the same genetic donor. In surviving adult clones, however, the expression of these imprinted genes was largely normal, except for the expression of the Igf2 gene in muscle, which was highly variable. Our data showed disruptions of expression of imprinted genes in bovine clones, which is possibly due to incomplete reprogramming of donor cell nuclei during nuclear transfer, and these abnormalities may be associated with the high neonatal mortality in cloned animals; clones that survived to adulthood, however, are not only physically healthy but also relatively normal at the molecular level of those three imprinted genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

c-Src, a protein tyrosine kinase (PTK) the specific activity of which is increased $>$20-fold in $\sim$80% of colon tumors and colon tumor cell lines, plays a role in both growth regulation and tumorigenicity of colon tumor cells. To examine the effect of increased c-Src specific activity on colon tumor cells, coumarin-derived tyrosine analog PTK inhibitors were assessed in a standard colon tumor cell line, HT-29. Of the nine compounds tested for inhibiting c-Src activity in a standard immune complex kinase assay from c-Src precipitated from HT-29 cells, the 7,8-dihydroxy-containing compounds daphnetin and fraxetin were most effective, with IC$\sb{50}$s of 0.6 $\pm$ 0.2 mM and 0.6 $\pm$ 0.3 mM, respectively. Treatment of HT-29 cells with daphnetin resulted in inhibition of cell growth in a dose-dependent manner. In contrast, scopoletin, a relatively poor Src inhibitor in vitro, did not inhibit HT-29 cell growth in the concentration range tested. In daphnetin treated cells, a dose-dependent decrease of c-Src activity paralleling cell growth inhibition was also observed; the IC$\sb{50}$ was 0.3 $\pm$ 0.1 mM for c-Src autophosphorylation. In contrast, the IC$\sb{50}$ for c-Src protein level was $>$ 0.6 mM, indicating that the effects of daphnetin were primarily an enzymatic activity of c-Src, rather than protein level in HT-29 cells. These results are the first to demonstrate that c-Src specific activity regulates colon tumor cell growth.^ To elucidate the signaling pathways activated by c-Src in colon tumor cells, the Src family substrate FAK, which has been shown to play a role in both extracellular matrix-dependent cell growth and survival, was examined. Coprecipitation assays showed Src-FAK association in detergent insoluble fractions of both attached and detached HT-29 cells, indicating that Src-FAK association in HT-29 cells is stable and, unlike untransformed cells, not dependent on cell-substratum contact. FAK also coprecipitated with Grb2, an adaptor protein also playing a role in cell proliferation and survival, in both attached and detached HT-29 cells, suggesting that a Src-FAK-Grb2-mediated signaling pathway(s) in HT-29 cells is/are constitutively activated.^ FAK was also analyzed in c-src antisense HT-29 clones AS15 and AS33 in which c-Src is specifically reduced by transfection of an antisense expression vector. FAK protein level is unexpectedly decreased in both AS15 and AS33 cells by 5-fold and 1.5-fold compared to HT-29, respectively, corresponding with the decreased expression of c-Src observed in these cells. FAK protein level was not decreased compared to parental in the c-src "sense" clone S8. Northern blot analyses showed decreased FAK mRNA levels compared to parental in AS15 and AS33, correlating with decreased FAK protein level, indicating that FAK activity in the antisense cells is regulated, at least in part, by altering FAK expression, and that this regulation is Src dependent. Because FAK has been implicated in anoikis, the ability of c-src antisense cells to survive in the absence of cell-substratum contact was examined. Decreased cell survival is seen in both AS15 and AS33, correlating with the decreases in c-Src and FAK levels and tumorigenicity in these cells. These results suggest that at least one mechanism by which activation of c-Src contributes to tumorigenic phenotype of colon tumor cells is by aberrantly promoting a survival signal through unregulated Src-FAK-Grb2 complexes. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allergens are responsible for the Th2 response in patients as part of complex mixtures of proteins, fatty acids and other molecules. Plant allergens have hitherto been included in several protein families that share no common biochemical features. Their physical, biochemical and immunological characteristics have been widely studied, but no definite conclusion has been reached about what makes a protein an allergen. N-glycosylation is characteristic of plant allergen sources but is not present in mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Varicella-Zoster virus (VZV) is a herpesvirus that becomes latent in sensory neurons after primary infection (chickenpox) and subsequently may reactivate to cause zoster. The mechanism by which this virus maintains latency, and the factors involved, are poorly understood. Here we demonstrate, by immunohistochemical analysis of ganglia obtained at autopsy from seropositive patients without clinical symptoms of VZV infection that viral regulatory proteins are present in latently infected neurons. These proteins, which localize to the nucleus of cells during lytic infection, predominantly are detected in the cytoplasm of latently infected neurons. The restriction of regulatory proteins from the nucleus of latently infected neurons might interrupt the cascade of virus gene expression that leads to a productive infection. Our findings raise the possibility that VZV has developed a novel mechanism for maintenance of latency that contrasts with the transcriptional repression that is associated with latency of herpes simplex virus, the prototypic alpha herpesvirus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic arsenic, a human carcinogen, is enzymatically methylated for detoxication, consuming S-adenosyl-methionine (SAM) in the process. The fact that DNA methyltransferases (MeTases) require this same methyl donor suggests a role for methylation in arsenic carcinogenesis. Here we test the hypothesis that arsenic-induced initiation results from DNA hypomethylation caused by continuous methyl depletion. The hypothesis was tested by first inducing transformation in a rat liver epithelial cell line by chronic exposure to low levels of arsenic, as confirmed by the development of highly aggressive, malignant tumors after inoculation of cells into Nude mice. Global DNA hypomethylation occurred concurrently with malignant transformation and in the presence of depressed levels of S-adenosyl-methionine. Arsenic-induced DNA hypomethylation was a function of dose and exposure duration, and remained constant even after withdrawal of arsenic. Hyperexpressibility of the MT gene, a gene for which expression is clearly controlled by DNA methylation, was also detected in transformed cells. Acute arsenic or arsenic at nontransforming levels did not induce global hypomethylation of DNA. Whereas transcription of DNA MeTase was elevated, the MeTase enzymatic activity was reduced with arsenic transformation. Taken together, these results indicate arsenic can act as a carcinogen by inducing DNA hypomethylation, which in turn facilitates aberrant gene expression, and they constitute a tenable theory of mechanism in arsenic carcinogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in superoxide dismutase 1 (SOD1; EC 1.15.1.1) are responsible for a proportion of familial amyotrophic lateral sclerosis (ALS) through acquisition of an as-yet-unidentified toxic property or properties. Two proposed possibilities are that toxicity may arise from imperfectly folded mutant SOD1 catalyzing the nitration of tyrosines [Beckman, J. S., Carson, M., Smith, C. D. & Koppenol, W. H. (1993) Nature (London) 364, 584] through use of peroxynitrite or from peroxidation arising from elevated production of hydroxyl radicals through use of hydrogen peroxide as a substrate [Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S., Gralla, E. D., Roe, J. A., Valentine, J. S. & Bredesen, D. E. (1996) Science 271, 515–518]. To test these possibilities, levels of nitrotyrosine and markers for hydroxyl radical formation were measured in two lines of transgenic mice that develop progressive motor neuron disease from expressing human familial ALS-linked SOD1 mutation G37R. Relative to normal mice or mice expressing high levels of wild-type human SOD1, 3-nitrotyrosine levels were elevated by 2- to 3-fold in spinal cords coincident with the earliest pathological abnormalities and remained elevated in spinal cord throughout progression of disease. However, no increases in protein-bound nitrotyrosine were found during any stage of SOD1-mutant-mediated disease in mice or at end stage of sporadic or SOD1-mediated familial human ALS. When salicylate trapping of hydroxyl radicals and measurement of levels of malondialdehyde were used, there was no evidence throughout disease progression in mice for enhanced production of hydroxyl radicals or lipid peroxidation, respectively. The presence of elevated nitrotyrosine levels beginning at the earliest stages of cellular pathology and continuing throughout progression of disease demonstrates that tyrosine nitration is one in vivo aberrant property of this ALS-linked SOD1 mutant.