973 resultados para resistance exercise


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Skeletal muscle from strength- and endurance-trained individuals represents diverse adaptive states. In this regard, AMPK-PGC-1α signaling mediates several adaptations to endurance training, while up-regulation of the Akt-TSC2-mTOR pathway may underlie increased protein synthesis after resistance exercise. We determined the effect of prior training history on signaling responses in seven strength-trained and six endurance-trained males who undertook 1 h cycling at 70% VO2peak or eight sets of five maximal repetitions of isokinetic leg extensions. Muscle biopsies were taken at rest, immediately and 3 h postexercise. AMPK phosphorylation increased after cycling in strength-trained (54%; P<0.05) but not endurance-trained subjects. Conversely, AMPK was elevated after resistance exercise in endurance- (114%; P<0.05), but not strengthtrained subjects. Akt phosphorylation increased in endurance- (50%; P<0.05), but not strengthtrained subjects after cycling but was unchanged in either group after resistance exercise. TSC2 phosphorylation was decreased (47%; P<0.05) in endurance-trained subjects following resistance exercise, but cycling had little effect on the phosphorylation state of this protein in either group. p70S6K phosphorylation increased in endurance- (118%; P<0.05), but not strength-trained subjects after resistance exercise, but was similar to rest in both groups after cycling. Similarly, phosphorylation of S6 protein, a substrate for p70 S6K, was increased immediately following resistance exercise in endurance- (129%; P<0.05), but not strength-trained subjects. In conclusion, a degree of “response plasticity” is conserved at opposite ends of the endurancehypertrophic adaptation continuum. Moreover, prior training attenuates the exercise specific signaling responses involved in single mode adaptations to training.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Physical activity is important following breast cancer. Trials of non-face-to-face interventions are needed to assist in reaching women living outside major metropolitan areas. This study seeks to evaluate the feasibility and effectiveness of a telephone-delivered, mixed aerobic and resistance exercise intervention for non-urban Australian women with breast cancer. A randomized controlled trial comparing an 8-month intervention delivered by exercise physiologists (n = 73) to usual care (n = 70). Sixty-one percent recruitment rate and 96% retention at 12 months; 79% of women in the intervention group received at least 75% of calls; odds (OR, 95% CI) of meeting intervention targets favored the intervention group for resistance training (OR 3.2; 1.2, 8.9) and aerobic (OR 2.1; 0.8, 5.5) activity. Given the limited availability of physical activity programs for non-urban women with breast cancer, results provide strong support for feasibility and modest support for the efficacy of telephone-delivered interventions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exercise-induced muscle damage is an important topic in exercise physiology. However several aspects of our understanding of how muscles respond to highly stressful exercise remain unclear In the first section of this review we address the evidence that exercise can cause muscle damage and inflammation in otherwise healthy human skeletal muscles. We approach this concept by comparing changes in muscle function (i.e., the force-generating capacity) with the degree of leucocyte accumulation in muscle following exercise. In the second section, we explore the cytokine response to 'muscle-damaging exercise', primarily eccentric exercise. We review the evidence for the notion that the degree of muscle damage is related to the magnitude of the cytokine response. In the third and final section, we look at the satellite cell response to a single bout of eccentric exercise, as well as the role of the cyclooxygenase enzymes (COX1 and 2). In summary, we propose that muscle damage as evaluated by changes in muscle function is related to leucocyte accumulation in the exercised muscles. 'Extreme' exercise protocols, encompassing unaccustomed maximal eccentric exercise across a large range of motion, generally inflict severe muscle damage, inflammation and prolonged recovery (> 1 week). By contrast, exercise resembling regular athletic training (resistance exercise and downhill running) typically causes mild muscle damage (myofibrillar disruptions) and full recovery normally occurs within a few days. Large variation in individual responses to a given exercise should, however be expected. The link between cytokine and satellite cell responses and exercise-induced muscle damage is not so clear The systemic cytokine response may be linked more closely to the metabolic demands of exercise rather than muscle damage. With the exception of IL-6, the sources of systemic cytokines following exercise remain unclear The satellite cell response to severe muscle damage is related to regeneration, whereas the biological significance of satellite cell proliferation after mild damage or non-damaging exercise remains uncertain. The COX enzymes regulate satellite cell activity, as demonstrated in animal models; however the roles of the COX enzymes in human skeletal muscle need further investigation. We suggest using the term 'muscle damage' with care. Comparisons between studies and individuals must consider changes in and recovery of muscle force-generating capacity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose The primary objective of this study was to examine the effect of exercise on subjective sleep quality in heart failure patients. Methods This study used a randomised, controlled trial design with blinded end-point analysis. Participants were randomly assigned to a 12-week programme of education and self-management support (control) or to the same programme with the addition of a tailored physical activity programme designed and supervised by an exercise specialist (intervention). The intervention consisted of 1 hour of aerobic and resistance exercise twice a week. Participants included 108 patients referred to three hospital heart failure services in Queensland, Australia. Results Patients who participated in supervised exercise classes showed significant improvement in subjective sleep quality, sleep latency, sleep disturbance and global sleep quality scores after 12 weeks of supervised hospital based exercise. Secondary analysis showed that improvements in sleep quality were correlated with improvements in geriatric depression score (p=0.00) and exercise performance (p=0.03). General linear models were used to examine whether the changes in sleep quality following intervention occurred independently of changes in depression, exercise performance and weight. Separate models adjusting for each covariate were performed. Results suggest that exercise significantly improved sleep quality independent of changes in depression, exercise performance and weight. Conclusion This study supports the hypothesis that a 12 week program of aerobic and resistance exercise improves subjective sleep quality in patients with heart failure. This is the first randomised controlled trial to examine the role of exercise in the improvement of sleep quality for patients with this disease. While this study establishes exercise as a therapy for poor sleep quality, further research is needed to investigate exercise as a treatment for other parameters of sleep in this population. Study investigators plan to undertake a more in-depth examination within the next 12 months

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study examined the effect of 20 weeks resistance training on a range of serum hormones and inflammatory markers at rest, and following acute bouts of exercise in prostate cancer patients undergoing androgen deprivation. Ten patients exercised twice weekly at high intensity for several upper and lower-body muscle groups. Neither testosterone nor prostate-specific antigen changed at rest or following an acute bout of exercise. However, serum growth hormone (GH), dehydroepiandrosterone (DHEA), interleukin-6, tumor necrosis factor-alpha and differential blood leukocyte counts increased (P < 0.05) following acute exercise. Resistance exercise does not appear to compromise testosterone suppression, and acute elevations in serum GH and DHEA may partly underlie improvements observed in physical function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective To evaluate the time course of the recovery of transverse strain in the Achilles and patellar tendon following a bout of resistance exercise. Methods Seventeen healthy adults underwent sonographic examination of the right patellar (n=9) and Achilles (n=8) tendons immediately prior to and following 90 repetitions of weight-bearing quadriceps and gastrocnemius-resistance exercise performed against an effective resistance of 175% and 250% body weight, respectively. Sagittal tendon thickness was determined 20 mm from the enthesis and transverse strain, as defined by the stretch ratio, was repeatedly monitored over a 24 h recovery period. Results Resistance exercise resulted in an immediate decrease in Achilles (t7=10.6, p<0.01) and patellar (t8=8.9, p<0.01) tendon thickness, resulting in an average transverse stretch ratio of 0.86±0.04 and 0.82±0.05, which was not significantly different between tendons. The magnitude of the immediate transverse strain response, however, was reduced with advancing age (r=0.63, p<0.01). Recovery in transverse strain was prolonged compared with the duration of loading and exponential in nature. The average primary recovery time was not significantly different between the Achilles (6.5±3.2 h) and patellar (7.1±3.2 h) tendons. Body weight accounted for 62% and 64% of the variation in recovery time, respectively. Conclusions Despite structural and biochemical differences between the Achilles and patellar tendon, the mechanisms underlying transverse creep recovery in vivo appear similar and are highly time dependent. These novel findings have important implications concerning the time required for the mechanical recovery of high-stress tendons following an acute bout of exercise.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Heart failure is a serious condition estimated to affect 1.5-2.0% of the Australian population with a point prevalence of approximately 1% in people aged 50-59 years, 10% in people aged 65 years or more and over 50% in people aged 85 years or over (National Heart Foundation of Australian and the Cardiac Society of Australia and New Zealand, 2006). Sleep disturbances are a common complaint of persons with heart failure. Disturbances of sleep can worsen heart failure symptoms, impair independence, reduce quality of life and lead to increased health care utilisation in patients with heart failure. Previous studies have identified exercise as a possible treatment for poor sleep in patients without cardiac disease however there is limited evidence of the effect of this form of treatment in heart failure. Aim: The primary objective of this study was to examine the effect of a supervised, hospital-based exercise training programme on subjective sleep quality in heart failure patients. Secondary objectives were to examine the association between changes in sleep quality and changes in depression, exercise performance and body mass index. Methods: The sample for the study was recruited from metropolitan and regional heart failure services across Brisbane, Queensland. Patients with a recent heart failure related hospital admission who met study inclusion criteria were recruited. Participants were screened by specialist heart failure exercise staff at each site to ensure exercise safety prior to study enrolment. Demographic data, medical history, medications, Pittsburgh Sleep Quality Index score, Geriatric Depression Score, exercise performance (six minute walk test), weight and height were collected at Baseline. Pittsburgh Sleep Quality Index score, Geriatric Depression Score, exercise performance and weight were repeated at 3 months. One hundred and six patients admitted to hospital with heart failure were randomly allocated to a 3-month disease-based management programme of education and self-management support including standard exercise advice (Control) or to the same disease management programme as the Control group with the addition of a tailored physical activity program (Intervention). The intervention consisted of 1 hour of aerobic and resistance exercise twice a week. Programs were designed and supervised by an exercise specialist. The main outcome measure was achievement of a clinically significant change (.3 points) in global Pittsburgh Sleep Quality score. Results: Intervention group participants reported significantly greater clinical improvement in global sleep quality than Control (p=0.016). These patients also exhibited significant improvements in component sleep disturbance (p=0.004), component sleep quality (p=0.015) and global sleep quality (p=0.032) after 3 months of supervised exercise intervention. Improvements in sleep quality correlated with improvements in depression (p<0.001) and six minute walk distance (p=0.04). When study results were examined categorically, with subjects classified as either "poor" or "good" sleepers, subjects in the Control group were significantly more likely to report "poor" sleep at 3 months (p=0.039) while Intervention participants were likely to report "good" sleep at this time (p=0.08). Conclusion: Three months of supervised, hospital based, aerobic and resistance exercise training improved subjective sleep quality in patients with heart failure. This is the first randomised controlled trial to examine the role of aerobic and resistance exercise training in the improvement of sleep quality for patients with this disease. While this study establishes exercise as a therapy for poor sleep quality, further research is needed to investigate the effect of exercise training on objective parameters of sleep in this population.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Skeletal muscle contraction stimulates multiple signaling cascades that govern a variety of metabolic and transcriptional events. Akt/protein kinase B regulates metabolism and growth/muscle hypertrophy, but contraction effects on this target and its substrates are varied and may depend on the mode of the contractile stimulus. Accordingly, we determined the effects of endurance or resistance exercise on phosphorylation of Akt and downstream substrates in six trained cyclists who performed a single bout of endurance or resistance exercise separated by ?7 days. Muscle biopsies were taken from the vastus lateralis at rest and immediately after exercise. Akt Ser 473 phosphorylation was increased (1.8-fold; P = 0.011) after endurance but was unchanged after resistance exercise. Conversely, Akt Thr 308 phosphorylation was unaltered after either bout of exercise. Several exercise-responsive phosphoproteins were detected by immunoblot analysis with a phospho-Akt substrate antibody. pp160 and pp300 were identified as AS160 and filamin A, respectively, with increased phosphorylation (2.0- and 4.9-fold, respectively; P < 0.05) after endurance but not resistance exercise. In conclusion, AS160 and filamin A may provide an important link to mediate endurance exercise-induced bioeffects in skeletal muscle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background. This study evaluated the time course of recovery of transverse strain in the Achilles and patellar tendons following a bout of resistance exercise. Methods. Seventeen healthy adults underwent sonographic examination of the right patellar (n = 9) or Achilles (n = 8) tendons immediately prior to and following 90 repetitions of weight–bearing exercise. Quadriceps and gastrocnemius exercise were performed against an effective resistance of 175% and 250% body weight, respectively. Sagittal tendon thickness was determined 20 mm from the tendon enthesis and transverse strain was repeatedly monitored over a 24 hour recovery period. Results. Resistance exercise resulted in an immediate decrease in Achilles (t7 = 10.6, P<.01) and patellar (t8 = 8.9, P<.01) tendon thickness, resulting in an average transverse strain of 0.14 ± 0.04 and 0.18 ± 0.05. While the average strain was not significantly different between tendons, older age was associated with a reduced transverse strain response (r=0.63, P<.01). Recovery of transverse strain, in contrast, was prolonged compared with the duration of loading and exponential in nature. The mean primary recovery time was not significantly different between Achilles (6.5 ± 3.2 hours) and patellar (7.1 ± 3.2 hours) tendons and body weight accounted for 62% and 64% of the variation in recovery time, respectively. Discussion. Despite structural and biochemical differences between the Achilles and patellar tendons [1], the mechanisms underlying transverse creep–recovery in vivo appear similar and are highly time dependent. Primary recovery required about 7 hours in healthy tendons, with full recovery requiring up to 24 hours. These in vivo recovery times are similar to those reported for axial creep recovery of the vertebral disc in vitro [2], and may be used clinically to guide physical activity to rest ratios in healthy adults. Optimal ratios for high–stress tendons in clinical populations, however, remain unknown and require further attention in light of the knowledge gained in this study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction The culture in many team sports involves consumption of large amounts of alcohol after training/competition. The effect of such a practice on recovery processes underlying protein turnover in human skeletal muscle are unknown. We determined the effect of alcohol intake on rates of myofibrillar protein synthesis (MPS) following strenuous exercise with carbohydrate (CHO) or protein ingestion. Methods In a randomized cross-over design, 8 physically active males completed three experimental trials comprising resistance exercise (8×5 reps leg extension, 80% 1 repetition maximum) followed by continuous (30 min, 63% peak power output (PPO)) and high intensity interval (10×30 s, 110% PPO) cycling. Immediately, and 4 h post-exercise, subjects consumed either 500 mL of whey protein (25 g; PRO), alcohol (1.5 g·kg body mass−1, 12±2 standard drinks) co-ingested with protein (ALC-PRO), or an energy-matched quantity of carbohydrate also with alcohol (25 g maltodextrin; ALC-CHO). Subjects also consumed a CHO meal (1.5 g CHO·kg body mass−1) 2 h post-exercise. Muscle biopsies were taken at rest, 2 and 8 h post-exercise. Results Blood alcohol concentration was elevated above baseline with ALC-CHO and ALC-PRO throughout recovery (P<0.05). Phosphorylation of mTORSer2448 2 h after exercise was higher with PRO compared to ALC-PRO and ALC-CHO (P<0.05), while p70S6K phosphorylation was higher 2 h post-exercise with ALC-PRO and PRO compared to ALC-CHO (P<0.05). Rates of MPS increased above rest for all conditions (~29–109%, P<0.05). However, compared to PRO, there was a hierarchical reduction in MPS with ALC-PRO (24%, P<0.05) and with ALC-CHO (37%, P<0.05). Conclusion We provide novel data demonstrating that alcohol consumption reduces rates of MPS following a bout of concurrent exercise, even when co-ingested with protein. We conclude that alcohol ingestion suppresses the anabolic response in skeletal muscle and may therefore impair recovery and adaptation to training and/or subsequent performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aging is associated with increased circulating pro-inflammatory and lower anti-inflammatory cytokines. Exercise training, in addition to improving muscle function, reduces these circulating pro-inflammatory cytokines. Yet, few studies have evaluated changes in the expression of cytokines within skeletal muscle after exercise training. The aim of the current study was to examine the expression of cytokines both at rest and following a bout of isokinetic exercise performed before and after 12 weeks of resistance exercise training in young (n = 8, 20.3 ± 0.8 yr) and elderly men (n = 8, 66.9 ± 1.6 yr). Protein expression of various cytokines was determined in muscle homogenates. The expression of MCP-1, IL-8 and IL-6 (which are traditionally classified as ‘pro-inflammatory’) increased substantially after acute exercise. By contrast, the expression of the anti-inflammatory cytokines IL-4, IL-10 and IL-13 increased only slightly (or not at all) after acute exercise. These responses were not significantly different between young and elderly men, either before or after 12 weeks of exercise training. However, compared with the young men, the expression of pro-inflammatory cytokines 2 h post exercise tended to be greater in the elderly men prior to training. Training attenuated this difference. These data suggest that the inflammatory response to unaccustomed exercise increases with age. Furthermore, regular exercise training may help to normalize this inflammatory response, which could have important implications for muscle regeneration and adaptation in the elderly.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: We determined the effect of protein supplementation on anabolic signaling and rates of myofibrillar and mitochondrial protein synthesis after a single bout of concurrent training. METHODS: Using a randomized cross-over design, 8 healthy males were assigned to experimental trials consisting of resistance exercise (8 × 5 leg extension, 80% 1-RM) followed by cycling (30 min at ~70% VO2peak) with either post-exercise protein (PRO: 25 g whey protein) or placebo (PLA) ingestion. Muscle biopsies were obtained at rest, 1 and 4 h post-exercise. RESULTS: Akt and mTOR phosphorylation increased 1 h after exercise with PRO (175-400%, P<0.01) and was different from PLA (150-300%, P<0.001). MuRF1 and Atrogin-1 mRNA were elevated post-exercise but were higher with PLA compared to PRO at 1 h (50-315%, P<0.05), while PGC-1α mRNA increased 4 h post-exercise (620-730%, P<0.001) with no difference between treatments. Post-exercise rates of myofibrillar protein synthesis increased above rest in both trials (75-145%, P <0.05) but were higher with PRO (67%, P<0.05) while mitochondrial protein synthesis did not change from baseline. CONCLUSION: Our results show that a concurrent training session promotes anabolic adaptive responses and increases metabolic/oxidative mRNA expression in skeletal muscle. Protein ingestion after combined resistance and endurance exercise enhances myofibrillar protein synthesis and attenuates markers of muscle catabolism and thus is likely an important nutritional strategy to enhance adaptation responses with concurrent training.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Compelling evidence demonstrates the importance of regular exercise following breast cancer, and this is particularly important for those who develop breast cancer-related lymphoedema. However, fear of lymphoedema exacerbation and the need to wear compression while exercising present as significant barriers for these women. This Master's research evaluated the need for wearing compression during exercise in women with breast cancer-related lymphoedema. Findings demonstrated that exercise performed without compression does not exacerbate lymphoedema or related symptoms. These findings are clinically relevant as they highlight that compression use during exercise should be prescribed on an individual basis, taking into consideration patient preferences and adherence issues.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: We investigated if oral ingestion of ibuprofen influenced leucocyte recruitment and infiltration following an acute bout of traditional resistance exercise Methods: Sixteen male subjects were divided into two groups that received the maximum over-the-counter dose of ibuprofen (1200mg d−1) or a similarly administered placebo following lower body resistance exercise. Muscle biopsies were taken from m.vastus lateralis and blood serum samples were obtained before and immediately after exercise, and at 3 and 24 h after exercise. Muscle cross-sections were stained with antibodies against neutrophils (CD66b and MPO) and macrophages (CD68). Muscle damage was assessed via creatine kinase and myoglobin in blood serum samples, and muscle soreness was rated on a ten-point pain scale. Results: The resistance exercise protocol stimulated a significant increase in the number of CD66b+ and MPO+ cells when measured 3 h post exercise. Serum creatine kinase, myoglobin and subjective muscle soreness all increased post-exercise. Muscle leucocyte infiltration, creatine kinase, myoglobin and subjective muscle soreness were unaffected by ibuprofen treatment when compared to placebo. There was also no association between increases in inflammatory leucocytes and any other marker of cellular muscle damage. Conclusion: Ibuprofen administration had no effect on the accumulation of neutrophils, markers of muscle damage or muscle soreness during the first 24 h of post-exercise muscle recovery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim is to critically review the more relevant evidence on the interrelationships between exercise and metabolic outcomes. The research questions addressed in the recent specific literature with the most relevant randomized controlled trials, meta-analysis and cohort studies are presented in three domains: aerobic exercise, resistance exercise, combined aerobic and resistance exercise. From this review appear that the effects of aerobic exercise are well established, and interventions with more vigorous aerobic exercise programs resulted in greater reductions in HbA1c, greater increase in VO2max and greater increase in insulin sensitivity. Considering the available evidence, it appears that resistance training could be an effective intervention to help glycemic control, especially considering that the effects of this form of intervention are comparable with what reported with aerobic exercise. Less studies have investigated whether combined resistance and aerobic training offers a synergistic and incremental effect on glycemic control; however, from the available evidences appear that combined exercise training seems to determine additional change in HbA1c that can be seen significant if compared with aerobic training alone and resistance training alone.