299 resultados para mushroom


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the evolution of localized blobs of swirling or buoyant fluid in an infinite, inviscid, electrically conducting fluid. We consider the three cases of a strong imposed magnetic field, a weak imposed magnetic field, and no magnetic field. For a swirling blob in the absence of a magnetic field, we find, in line with others, that the blob bursts radially outward under the action of the centrifugal force, forming a thin annular vortex sheet. A simple model of this process predicts that the vortex sheet thins exponentially fast and that it moves radially outward with constant velocity. These predictions are verified by high-resolution numerical simulations. When an intense magnetic field is applied, this phenomenon is suppressed, with the energy and angular momentum of the blob now diffusing axially along the magnetic field lines, converting the blob into a columnar structure. For modest or weak magnetic fields, there are elements of both types of behavior, with the radial bursting dominating over axial diffusion for weak fields. However, even when the magnetic field is very weak, the flow structure is quite distinct to that of the nonmagnetic case. In particular, a small but finite magnetic field places a lower bound on the thickness of the annular vortex sheet and produces an annulus of counter-rotating fluid that surrounds the vortex core. The behavior of the buoyant blob is similar. In the absence of a magnetic field, it rapidly develops the mushroomlike shape of a thermal, with a thin vortex sheet at the top and sides of the mushroom. Again, a simple model of this process predicts that the vortex sheet at the top of the thermal thins exponentially fast and rises with constant velocity. These predictions are consistent with earlier numerical simulations. Curiously, however, it is shown that the net vertical momentum associated with the blob increases linearly in time, despite the fact that the vertical velocity at the front of the thermal is constant. As with the swirling blob, an imposed magnetic field inhibits the formation of a vortex sheet. A strong magnetic field completely suppresses the phenomenon, replacing it with an axial diffusion of momentum, while a weak magnetic field allows the sheet to form, but places a lower bound on its thickness. The magnetic field does not, however, change the net vertical momentum of the blob, which always increases linearly with time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental data have demonstrated that mushroom-shaped fibrils adhere much better to smooth substrates than punch-shaped fibrils. We present a model that suggests that detachment processes for such fibrils are controlled by defects in the contact area that are confined to its outer edge. Stress analysis of the adhered fibril, carried out for both punch and mushroom shapes with and without friction, suggests that defects near the edge of the adhesion area are much more damaging to the pull-off strength in the case of the punch than for the mushroom. The simulations show that the punch has a higher driving force for extension of small edge defects compared with the mushroom adhesion. The ratio of the pull-off force for the mushroom to that of the punch can be predicted from these simulations to be much greater than 20 in the friction-free case, similar to the experimental value. In the case of sticking friction, a ratio of 14 can be deduced. Our analysis also offers a possible explanation for the evolution of asymmetric mushroom shapes (spatulae) in the adhesion organ of geckos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unusual highly functionalized lactarane sesquiterpene, named velleratretraol (1), was isolated from the ethanol extract of the fruiting body of the mushroom Lactarius vellereus. Its structure was determined through spectroscopic analysis and single-cry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural odors are usually mixtures; yet, humans and animals can experience them as unitary percepts. Olfaction also enables stimulus categorization and generalization. We studied how these computations are performed with the responses of 168 locust antennal lobe projection neurons (PNs) to varying mixtures of two monomolecular odors, and of 174 PNs and 209 mushroom body Kenyon cells (KCs) to mixtures of up to eight monomolecular odors. Single-PN responses showed strong hypoadditivity and population trajectories clustered by odor concentration and mixture similarity. KC responses were much sparser on average than those of PNs and often signaled the presence of single components in mixtures. Linear classifiers could read out the responses of both populations in single time bins to perform odor identification, categorization, and generalization. Our results suggest that odor representations in the mushroom body may result from competing optimization constraints to facilitate memorization (sparseness) while enabling identification, classification, and generalization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural odors are usually mixtures; yet, humans and animals can experience them as unitary percepts. Olfaction also enables stimulus categorization and generalization. We studied how these computations are performed with the responses of 168 locust antennal lobe projection neurons (PNs) to varying mixtures of two monomolecular odors, and of 174 PNs and 209 mushroom body Kenyon cells (KCs) to mixtures of up to eight monomolecular odors. Single-PN responses showed strong hypoadditivity and population trajectories clustered by odor concentration and mixture similarity. KC responses were much sparser on average than those of PNs and often signaled the presence of single components in mixtures. Linear classifiers could read out the responses of both populations in single time bins to perform odor identification, categorization, and generalization. Our results suggest that odor representations in the mushroom body may result from competing optimization constraints to facilitate memorization (sparseness) while enabling identification, classification, and generalization

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on mixed mass cultivation of Anabaena spp. on a large scale (5170 m2) were conducted continuously for 3 years. Under the continental monsoon climate in northern subtropics (30-degrees-N, 115-degrees-E), 7-11 g dry weight m-2 day-1 of microalgal biomass on average was harvested in simple plastic greenhouses in the effective growth days during the warmer seasons. The maximum productivity was 22 g m-2 day-1 in the middle of summer. Observations on the productive properties of strains of Anabaena spp. indicated that they were different from and could compensate for each other in their productivities and adaptations to the seasonal changes. With different lining materials (PVC sheets, concrete, sand and soil) in the culture ponds, no significant variation of productivity was found, but bubbling with biogas in the middle of the day and the application of some growth regulating substances (2,4-D, NaHSO3 and extracts of oyster mushroom spawn) was able to improve the production. The cost of microalgal biomass in this way was around 0.75-1.0 US dollar(s) per kilogram.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continent of eastern China, especially the North China Craton (NCC), has endured intensive tectonic renovation during Mesozoic and Cenozoic, with the presence of widespread magmatism, high heat flow and development of large sedimentary basins and mountain ranges. The cratonic lithosphere of the region has been destroyed remarkably, which is characterized by not only a significant reduction in thickness but also complex modifications in physical and chemical properties of the lithosphere. As for the tectonic regime controlling the evolution of the NCC, various models have been put forward, including the impingement of mantle plumes (“mushroom cloud” model), the collision of south China block and north China block, the subduction of the Pacific plate, etc. Lithosphere delamination and thermal erosion were proposed as the two end-member mechanisms of the lithospheric thinning. However, given the paucity of the data, deep structural evidence is currently still scarce for distinguishing and testifying these models. To better understand the deep structure of the NCC, from 2000 to the present, temporary seismic array observations have been conducted in the NCC by the Seismological Laboratory of the Institute of the Geology and Geophysics, Chinese Academy of Sciences under the North China Interior Structure Project (NCISP). Many arrays extend from the North China Craton and the off-craton regions, and traverse a lot of main tectonic boundaries. A total of more than 300 broadband seismic stations have been deployed along several profiles that traversed the major tectonic units within the craton’s interior, at the boundary areas and in the neighboring off-craton regions. These stations recorded abundant high-quality data, which provides an unprecedented opportunity for us to unravel the deep structural features of the NCC using seismological methods. Among all the seismological methods, the surface wave method appears to be an efficient and widely adopted technique in studying the crustal and upper mantle structures. In particular, it can provide the absolute values of S-wave velocity that are difficult to obtain with other methods. Benefiting from the deployment of dense seismic arrays, progresses have been made in improving the spatial resolution of surface wave imaging, which makes it possible to resolve the fine-scale velocity structures of the crust and upper mantle based on surface wave analysis. Meanwhile, the differences in the S-wave velocities derived from Rayleigh and Love wave data can provide information on the radial anisotropy beneath the seismic arrays. In this thesis, using the NCISP-III broadband data and based on phase velocity dispersion analysis and inversion of fundamental mode Rayleigh and Love waves, I investigated the lateral variations in the S-wave velocity structure of the crust and uppermost mantle beneath the Yanshan Belt and adjacent regions at the northeastern boundary of the NCC. Based on the constructed structural images, I discussed possible deep processes of the craton destruction in the study region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been a growing concern about the use of fossil fuels and its adverse effects on the atmospheric greenhouse and ecological environment. A reduction in the release rate of CO2 into the atmosphere poses a major challenge to the land ecology of China. The most promising way of achieving CO2 reduction is to dispose of CO2 in deep saline aquifers. Deep aquifers have a large potential for CO2 sequestration in geological medium in terms of volume and duration. Through the numerical simulation of multiphase flow in a porous media, the transformation and motion of CO2 in saline aquifers has been implemented under various temperature and hydrostatic pressure conditions, which plays an important role to the assessment of the reliability and safety of CO2 geological storage. As expected, the calculated results can provide meaningful and scientific information for management purposes. The key problem to the numerical simulation of multiphase flow in a porous media is to accurately capture the mass interface and to deal with the geological heterogeneity. In this study, the updated CE/SE (Space and time conservation element and solution element) method has been proposed, and the Hybrid Particle Level Set method (HPLS) has extended for multiphase flows in porous medium, which can accurately trace the transformation of the mass interface. The benchmark problems have been applied to evaluate and validate the proposed method. In this study, the reliability of CO2 storage in saline aquifers in Daqingzi oil field in Sunlong basin has been discussed. The simulation code developed in this study takes into account the state for CO2 covering the triple point temperature and pressure to the supercritical region. The geological heterogeneity has been implemented, using the well known geostatistical model (GSLIB) on the base of the hard data. The 2D and 3D model have been set up to simulate the CO2 multiphase flow in the porous saline aquifer, applying the CE/SE method and the HPLS method .The main contents and results are summarized as followings. (1) The 2D CE/SE method with first and second –order accuracy has been extended to simulate the multiphase flow in porous medium, which takes into account the contribution of source and sink in the momentum equation. The 3D CE/SE method with the first accuracy has been deduced. The accuracy and efficiency of the proposed CE/SE method have been investigated, using the benchmark problems. (2) The hybrid particle level set method has been made appropriate and extended for capturing the mass interface of multiphase flows in porous media, and the numerical method for level set function calculated has been formulated. (3) The closed equations for multiphase flow in porous medium has been developed, adept to both the Darcy flow and non-Darcy flow, getting over the limitation of Reynolds number to the calculation. It is found that Darcy number has a decisive influence on pressure as well as velocity given the Darcy number. (4) The new Euler scheme for numerical simulations of multiphase flows in porous medium has been proposed, which is efficient and can accurately capture the mass interface. The artificial compressibility method has been used to couple the velocities and pressure. It is found that the Darcy number has determinant effects on the numerical convergence and stability. In terms of the different Darcy numbers, the coefficient of artificial compressibility and the time step have been obtained. (5) The time scale of the critical instability for critical CO2 in the saline aquifer has been found, which is comparable with that of completely CO2 dissolved saline aquifer. (6) The concept model for CO2 multiphase flows in the saline aquifer has been configured, based on the temperature, pressure, porosity as well as permeability of the field site .Numerical simulation of CO2 hydrodynamic trapping in saline aquifers has been performed, applying the proposed CE/SE method. The state for CO2 has been employed to take into account realistic reservoir conditions for CO2 geological sequestration. The geological heterogeneity has been sufficiently treated , using the geostatistical model. (7) It is found that the Rayleigh-Taylor instability phenomenon, which is associated with the penetration of saline fluid into CO2 fluid in the direction of gravity, has been observed in CO2 multiphase flows in the saline aquifer. Development of a mushroom-type spike is a strong indication of the formation of Kelvin-Helmholtz instability due to the developed short wavelength perturbations present along the interface and parallel to the bulk flow. Additional key findings: the geological heterogeneity can distort the flow convection. The ascending of CO2 can induce the persistent flow cycling effects. The results show that boundary conditions of the field site have determinant effects on the transformation and motion of CO2 in saline aquifers. It is confirmed that the proposed method and numerical model has the reliability to simulate the process of the hydrodynamic trapping, which is the controlling mechanism for the initial period of CO2 storage at time scale of 100 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rock heterogeneity plays an important role in rock fracturing processes. However, because fracturing is a dynamic process and it is very difficult to quantify materials' heterogeneity, most of the theories dealing with local failure were based on the homogeneity assumption, very few involving stress distribution heterogeneity and successive local failure due to rock heterogeneity. Therefore, based on various references, the author studied the laws and mechanism of influences of heterogeneity on rock fracturing processes, under the frame of the project "Study on Associate Mechanism between Rock Mass Fracture and Strength Failure", funded by Nation Natural Science Fund. the research consists of such aspects as size effect correction to rock fracture parameters, SEM (Scanning Electron Microscope) real-time observation on rock samples under different loads, micro-hardness testing, and numerical simulating based on microstructure. There are some important research results as followed: 1. Unifying formula for nonlinear and non-singularity correction, simplifying the complex process of correcting size effect on rock fracture toughness. 2. Using the methods of micro-hardness testing mineral grain and random jointing micrograph digitizing mineral slice, preliminarily solving the problems of numerical simulating and quantitatively describing the heterogeneous strength and its distribution rules, which has certain innovation and better practicability. 3. Based on SEM real-time observation, studying the micro-process of fracturing in marble, sandstone, granite, and mushroom stone samples with premanufactured cracks under tension, pure-shear and compression-shear conditions. Strength Failure was observed: there was some kind failure occurred before Fracture Failure in marble and sandstone samples with double cracks under pure-shearing. It is believed that the reason of strength failure developing is that stress concentrations is some locations are larger than that near the end of pre-manufactured cracks. 4. Based on the idea that rock macro-constitute is composed of complex microstructure, the promising method used to handle heterogeneity considers not only the heterogeneity of the rock medium, but also the heterogeneity of the rock structure. 5. Putting forward two types of rock strength failure: medium strength failure induced by heterogeneity of rock medium and structure strength failure induced by heterogeneity rock structure. 6. By evaluating potential fracture cell with proper failure priority, the numerical simulating method solved the problem of simulating the coextensive strength failure and fracture failure with convention strength failure rules. The result of numerical analysis shows that the influence of heterogeneity on rock fracturing processes is evident. The sinuosity of the rock fracture-propagation path, and the irregular fluctuation of loading displacement curve, is mainly controlled by the heterogeneity of rock medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 1970s, igneous reservoirs such as Shang741, Bin674 and Luol51 have been found in Jiyang depression, which are enrichment and heavy-producing. Showing good prospect of exploration and development, igneous reservoirs have been the main part of increasing reserves and production in Shengli oilfield. As fracture igneous reservoir being an extraordinary complex concealed reservoir and showing heavy heterogeneity in spatial distribution, the study of recognition, prediction, formation mechanism and the law of distribution of fracture is essential to develop the reservoir. Guided by multiple discipline theory such as sedimentology, geophysics, mineralogy, petroleum geology, structural geology and reservoir engineering, a set of theories and methods of recognition and prediction of fractured igneous rock reservoir are formed in this paper. Rock data, three-dimensional seismic data, log data, borehole log data, testing data and production data are combined in these methods by the means of computer. Based on the research of igneous rock petrography and reservoir formation mechanism, emphasized on the assessment and forecast of igneous rock reservoir, aimed at establishing a nonhomogeneity quantification model of fractured igneous rock reservoir, the creativity on the fracture recognition, prediction and formation mechanism are achieved. The research result is applied to Jiyang depression, suggestion of exploration and development for fractured igneous rock reservoir is supplied and some great achievement and favourable economic effect are achieved. The main achievements are gained as follows: 1. The main facies models of igneous rock reservoir in JiYang depression are summarized. Based on data and techniques of seism, well log and logging,started from the research of single well rock facies, proceeded by seismic and log facies research, from point to line and line to face, the regional igneous facies models are established. And hypabyssal intrusion allgovite facies model, explosion volcaniclastic rock facies model and overfall basaltic rocks facies model are the main facies models of igneous rock reservoir in JiYang depression. 2. Four nonhomogenous reservoir models of igneous reservoirs are established, which is the base of fracture prediction and recognition. According to characteristics of igneous petrology and spatial types of reservoir, igneous reservoirs of Jiyang depression are divided into four categories: fractured irruptive rock reservoir, fracture-pore thermocontact metamorphic rock and irruptive rock compound reservoir, pore volcanic debris cone reservoir and fracture-pore overfall basaltic rock reservoir. The spatial distribution of each model's reservoir has its features. And reservoirs can be divided into primary ones and secondary ones, whose mechanism of formation and laws of distribution are studied in this paper. 3. Eight geologic factors which dominate igneous reservoirs are presented. The eight geologic factors which dominates igneous reservoirs are igneous facies, epigenetic tectonics deformation, fracture motion, intensity of intrusive effect and adjoining-rock characters, thermo-contact metamorphic rock facies, specific volcano-tectonic position, magmatic cyclicity and epigenetic diagenetic evolution. The interaction of the eight factors forms the four types nonhomogenous reservoir models of igneous reservoirs in Jiyang depression. And igneous facies and fracture motion are the most important and primary factors. 4. Identification patterns of seismic, well log and logging facies of igneous rocks are established. Igneous rocks of Jiyang depression show typical reflecting features on seismic profile. Tabular reflection seismic facies, arc reflection seismic facies and hummocky or mushroom reflection seismic facies are the three main facies. Logging response features of basic basalt and diabase are shown as typical "three low and two high", which means low natural gamma value, low interval transit-time, low neutron porosity, high resistivity and high density. Volcaniclastic rocks show "two high and three low"-high neutron porosity, high interval transit-time, low density, low-resistance and low natural gamma value. Thermo-contact metamorphic rocks surrounding to diabase show "four high and two low" on log data, which is high natural gamma value, high self-potential anomaly, high neutron porosity, high interval transit-time and low density and low-resistance. Based on seismic, well log and logging data, spatial shape of Shang 741 igneous rock is described. 5. The methods of fracture prediction and recognition for fractured igneous reservoir are summarized. Adopting FMI image log and nuclear magnetic resonance log to quantitative analysis of fractured igneous reservoir and according to formation mechanism and shape of fracture, various fractures are recognized, such as high-angle fracture, low-angle fracture, vertical fracture, reticulated fracture, induced fracture, infilling fracture and corrosion vug. Shang 741 intrusive rock reservoir can be divided into pore-vug compound type, pore fracture type, micro-pore and micro-fracture type. Physical properties parameters of the reservoir are computed and single-well fracture model and reservoir parameters model are established. 6. Various comprehensive methods of fracture prediction and recognition for fractured igneous reservoir are put forward. Adopting three-element (igneous facies, fracture motion and rock bending) geologic comprehensive reservoir evaluation technique and deep-shallow unconventional laterolog constrained inversion technique, lateral prediction of fractured reservoir such as Shang 741 is taken and nonhomogeneity quantification models of reservoirs are established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article introduces a new neural network architecture, called ARTMAP, that autonomously learns to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success. This supervised learning system is built up from a pair of Adaptive Resonance Theory modules (ARTa and ARTb) that are capable of self-organizing stable recognition categories in response to arbitrary sequences of input patterns. During training trials, the ARTa module receives a stream {a^(p)} of input patterns, and ARTb receives a stream {b^(p)} of input patterns, where b^(p) is the correct prediction given a^(p). These ART modules are linked by an associative learning network and an internal controller that ensures autonomous system operation in real time. During test trials, the remaining patterns a^(p) are presented without b^(p), and their predictions at ARTb are compared with b^(p). Tested on a benchmark machine learning database in both on-line and off-line simulations, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accurately than alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the database. It achieves these properties by using an internal controller that conjointly maximizes predictive generalization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis, using only local operations. This computation increases the vigilance parameter ρa of ARTa by the minimal amount needed to correct a predictive error at ARTb· Parameter ρa calibrates the minimum confidence that ARTa must have in a category, or hypothesis, activated by an input a^(p) in order for ARTa to accept that category, rather than search for a better one through an automatically controlled process of hypothesis testing. Parameter ρa is compared with the degree of match between a^(p) and the top-down learned expectation, or prototype, that is read-out subsequent to activation of an ARTa category. Search occurs if the degree of match is less than ρa. ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of its hypotheses based upon predictive success. As a result, rare but important events can be quickly and sharply distinguished even if they are similar to frequent events with different consequences. Between input trials ρa relaxes to a baseline vigilance pa When ρa is large, the system runs in a conservative mode, wherein predictions are made only if the system is confident of the outcome. Very few false-alarm errors then occur at any stage of learning, yet the system reaches asymptote with no loss of speed. Because ARTMAP learning is self stabilizing, it can continue learning one or more databases, without degrading its corpus of memories, until its full memory capacity is utilized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new family of neural network architectures is presented. This family of architectures solves the problem of constructing and training minimal neural network classification expert systems by using switching theory. The primary insight that leads to the use of switching theory is that the problem of minimizing the number of rules and the number of IF statements (antecedents) per rule in a neural network expert system can be recast into the problem of minimizing the number of digital gates and the number of connections between digital gates in a Very Large Scale Integrated (VLSI) circuit. The rules that the neural network generates to perform a task are readily extractable from the network's weights and topology. Analysis and simulations on the Mushroom database illustrate the system's performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work examines the origins and early history of the Queen's College, Cork. Designedly there is as much stress on the origins as on the early history, for it is the contention of the work that the College was something more than a legislative mushroom. It was very much in the tradition of the civic universities which added an exciting new dimension to academic life in these islands in the nineteenth century. The first chapter surveys university practice and thinking at the opening of the century, relying exclusively on published sources. The second chapter is devoted specifically to the state of learning in Cork during the period, and makes extensive use of hitherto unpublished manuscript material in relation to the Royal Cork Institution. The third chapter deals with the highly significant evidence on education embodied in the Report of the Select Committee on Irish Education of 1838. This material has not previously been published. In chapter four an extended study is made of relevant letters in the manuscript correspondence of Sir Robert Peel - even the most recent authoritative biography has ignored this material. The remaining three chapters are devoted more specifically to the College, both in the formulation or policy and in its practical working. In chapter six there is an extended survey of early College life based exclusively on hitherto unpublished manuscript material in the College Archives. All of these sources, together with incidental published material, are set out at the end of each chapter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide a select overview of tools supporting traditional Jewish learning. Then we go on to discuss our own HyperJoseph/HyperIsaac project in instructional hypermedia. Its application is to teaching, teacher training, and self-instruction in given Bible passages. The treatment of two narratives has been developed thus far. The tool enables an analysis of the text in several respects: linguistic, narratological, etc. Moreover, the Scriptures' focality throughout the cultural history makes this domain of application particularly challenging, in that there is a requirement for the tool to encompass the accretion of receptions in the cultural repertoire, i.e., several layers of textual traditions—either hermeneutic (i.e., interpretive), or appropriations—related to the given core passage, thus including "secondary" texts (i.e., such that are responding or derivative) from as disparate realms as Roman-age and later homiletics, Medieval and later commentaries or supercommentaries, literary appropriations, references to the arts and modern scholarship, etc. in particular, the Midrash (homiletic expansions) is adept at narrative gap filling, so the narratives mushroom at the interstices where the primary text is silent. The genealogy of the project is rooted in Weiss' index of novelist Agnon's writings, which was eventually upgraded into a hypertextual tool, including Agnon's full-text and ancillary materials. Those early tools being intended primarily for reference and research-support in literary studies, the Agnon hypertext system was initially emulated in the conception of HyperJoseph, which is applied to the Joseph story from Genesis. Then, the transition from a tool for reference to an instructional tool required a thorough reconception in an educational perspective, which led to HyperIsaac, on the sacrifice of Isaac, and to a redesign and upgrade of HyperJoseph as patterned after HyperIsaac.