917 resultados para giant panda
Resumo:
Effect of particle size on the electron transport and magnetic properties of La0.7Ca0.3MnO3 has been investigated. While the ferromagnetic Tc, low field magnetic susceptibility, and insulator‐metal transition are markedly affected by the particle size, the maximum magnetoresistance exhibited by the samples near Tc is not sensitive to the particle size. However, the magnetoresistance at 4.2 K increases with decrease in particle size, suggesting a substantial contribution by the grain boundaries. Preliminary measurements on La0.7Sr0.3MnO3 samples of different particle sizes also corroborate the above conclusions.
Resumo:
We present thermal and electrical transport measurements of low-density (10(14) m(-2)), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We find that even in the supposedly strongly localized regime, where the electrical resistivity of the system is two orders of magnitude greater than the quantum of resistance h/e(2), the thermopower decreases linearly with temperature indicating metallicity. Remarkably, the magnitude of the thermopower exceeds the predicted value in noninteracting metallic 2DESs at similar carrier densities by over two orders of magnitude. Our results indicate a new quantum state and possibly a novel class of itinerant quasiparticles in dilute 2DESs at low temperatures where the Coulomb interaction plays a pivotal role.
Resumo:
We report low-dimensional fabrication of technologically important giant dielectric material CaCu3Ti4O12 (CCTO) using soft electron beam lithographic technique. Sol-gel precursor solution of CCTO was prepared using inorganic metal nitrates and Ti-isopropoxide. Employing the prepared precursor solution and e-beam lithographically fabricated resist mask CCTO dots with similar to 200 nm characteristic dimension were fabricated on platinized Si (111) substrate. Phase formation, chemical purity and crystalline nature of fabricated low dimensional structures were investigated with X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (SAED), respectively. Morphological investigations were carried out with the help of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This kind of solution based fabrication of patterned low-dimensional high dielectric architectures might get potential significance for cost-effective technological applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A systematic x-ray and neutron powder diffraction study of the giant tetragonality multiferroic (1-x) BiFeO3-(x) PbTiO3 have revealed that the compositions close to the morphotropic phase boundary present two different structural phase transition scenarios on cooling from the cubic phase: (i) cubic -> tetragonal (T-2) + tetragonal (T-1) -> tetragonal (T-1) and (ii) cubic -> tetragonal (T-2) + tetragonal (T-1) + rhombohedral (R3c) -> tetragonal (T-1) + rhombohedral (R3c). The comparatively larger tetragonality (c/a - 1) of the T-1 phase as compared to the coexisting isostructural T-2 phase is shown to be a result of significantly greater degree of overlap of the Pb/Bi-6s and Ti/Fe-3d with the O-2p orbitals as compared to that in the T-2 phase. The formation/suppression of the minor metastable rhombohedral phase seems to be governed by subtle play of local kinetic factors. In the scenario when the minor rhombohedral (R) phase is formed along with the tetragonal phases it is able to accommodate the large transformation stress in the system due to formation of the tetragonal phases, and prevent the solid from disintegration into powder after sintering. When the metastable rhombohedral phase is not formed, the large transformation strain ruptures the grain boundaries leading to fragmentation of the dense solid to powder. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4792215]
Resumo:
We report thermopower (S) and electrical resistivity (rho (2DES) ) measurements in low-density (10(14) m(-2)), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We observe at temperatures a parts per thousand(2)0.7 K a linearly growing S as a function of temperature indicating metal-like behaviour. Interestingly this metallicity is not Drude-like, showing several unusual characteristics: (i) the magnitude of S exceeds the Mott prediction valid for non-interacting metallic 2DESs at similar carrier densities by over two orders of magnitude; and (ii) rho (2DES) in this regime is two orders of magnitude greater than the quantum of resistance h/e (2) and shows very little temperature-dependence. We provide evidence suggesting that these observations arise due to the formation of novel quasiparticles in the 2DES that are not electron-like. Finally, rho (2DES) and S show an intriguing decoupling in their density-dependence, the latter showing striking oscillations and even sign changes that are completely absent in the resistivity.
Resumo:
Seasonal rainfall patterns in Bangalore, India, have been reconstructed using stable isotopic ratios in the growth bands of Giant African Land Snail shells. The present study was conducted at Bangalore, India which receives rain during the summer months. The oxygen isotopic record in the rainwater samples collected during different months covering the period of the summer monsoon of the year 2008 is compared with the isotopic ratio in the gastropod growth bands deposited simultaneously. The chronology of the shell growth band is independently established assuming the growth rate observed in a chamber experiment maintaining similar relative humidity and temperature conditions. A consistent pattern observed in the isotopic ratio in the gastropod growth bands and rainwater is demonstrated and provides a novel approach for precipitation reconstruction at seasonal and weekly time scales. This approach of using isotopic ratios in the gastropod growth bands for rainfall can serve as a substitute for filling gaps in rainfall data and for cases where no rain records are available. In addition, they can be used to determine the frequencies and magnitudes of dry spells from the past records. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Chiral metamaterials can have diverse technological applications, such as engineering strongly twisted local electromagnetic fields for sensitive detection of chiral molecules, negative indices of refraction, broadband circular polarization devices, and many more. These are commonly achieved by arranging a group of noble-metal nanoparticles in a chiral geometry, which, for example, can be a helix, whose chiroptical response originates in the dynamic electromagnetic interactions between the localized plasmon modes of the individual nanoparticles. A key question relevant to the chiroptical response of such materials is the role of plasmon interactions as the constituent particles are brought closer, which is investigated in this paper through theoretical and experimental studies. The results of our theoretical analysis, when the particles are brought in close proximity are dramatic, showing a large red shift and enhancement of the spectral width and a near-exponential rise in the strength of the chiroptical response. These predictions were further confirmed with experimental studies of gold and silver nanoparticles arranged on a helical template, where the role of particle separation could be investigated in a systematic manner. The ``optical chirality'' of the electromagnetic fields in the vicinity of the nanoparticles was estimated to be orders of magnitude larger than what could be achieved in all other nanoplasmonic geometries considered so far, implying the suitability of the experimental system for sensitive detection of chiral molecules.
Resumo:
Magnetocaloric (MC) properties of GdMnO3 single crystals are investigated using magnetic and magneto-thermal measurements. GdMnO3 exhibits a giant MC effect (isothermal change in magnetic entropy (-Delta S-M) similar to 31 J (kg K)(-1) at 7 K and adiabatic change in temperature similar to 10 K at 19 K for magnetic field variation 0-80 kOe). Complex interactions between 3d and 4f magnetic sublattices influence MC properties. The rare-earth antiferromagnetic ordering induces an inverse MC effect (positive Delta S-M) along `a' and `c' axes whereas it's not seen along the `b' axis, revealing complex anisotropic magnetic ordering. The antiferromagnetic ordering possibly changes to ferromagnetic ordering at higher fields.
Resumo:
We report an enhanced actuation in bulk carbon nanotubes (CNTs) under coupled electric and magnetic fields, which is much higher than that evaluated in the presence of individual fields. Coupled electric and magnetic fields induce a directional actuation demonstrating a transformation from polarity independent to dependent actuation behavior of CNTs. Both qualitative and quantitative analyses are performed to understand this transformation in the bulk CNTs. Moreover, actuations along radial and axial directions of CNTs have also demonstrated a similar directional behavior.
Resumo:
Merocyanine dyes that exhibit antithetic cyaninelike behaviour and giant first-order hyperpolarisability (beta) values have been designed. These cyanine-type dyes open up an intriguing route towards molecular-based electrooptic materials as well as new second-harmonic generation dyes for imaging.
Resumo:
There is great interest in lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O-3 (15/10BCTZ) because of its exceptionally large piezoelectric response Liu and Ren, Phys. Rev. Lett. 103, 257602 (2009)]. In this paper, we have analyzed the nature of: (i) crystallographic phase coexistence at room temperature, (ii) temperature-and field-induced phase transformation to throw light on the atomistic mechanisms associated with the large piezoelectric response of this system. A detailed temperature-dependent dielectric and lattice thermal expansion study proved that the system exhibits a weak dielectric relaxation, characteristic of a relaxor ferroelectric material on the verge of exhibiting a normal ferroelectric-paraelectric transformation. Careful structural analysis revealed that a ferroelectric state at room temperature is composed of three phase coexistences, tetragonal (P4mm)+ orthorhombic (Amm2) + rhombohedral (R3m). We also demonstrate that the giant piezoresponse is associated with a significant fraction of the tetragonal phase transforming to rhombohedral. It is argued that the polar nanoregions associated with relaxor ferroelectricity amplify the piezoresponse by providing an additional degree of intrinsic structural inhomogeneity to the system.
Resumo:
Zn1-xMgxO ( <= x <= 0.1) ceramics were fabricated by conventional solid-state reaction of co-precipitated zinc oxide and magnesium hydroxide nanoparticles. Structural and morphological properties of the fabricated ceramics were studied using X-ray diffraction and scanning electron microscopic analysis. The dielectric measurements of the ceramics were carried out as a function of frequency and temperature respectively. Interestingly, Mg doped ZnO (MZO) samples exhibited colossal dielectric response (similar to 1 x 10(4) at 1 kHz) with Debye like relaxation. The detailed dielectric studies and thermal analyses showed that the unusual dielectric response of the samples were originated from the defected grain and grain boundary (GB) conductivity relaxations due to the absorbed atmospheric water vapor (moisture). Impedance spectroscopy was employed to determine the defected grain and GB resistances, capacitances and which supported Maxwell-Wagner type relaxation phenomena. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A fully real-time coherent dedispersion system has been developed for the pulsar back-end at the Giant Metrewave Radio Telescope (GMRT). The dedispersion pipeline uses the single phased array voltage beam produced by the existing GMRT software back-end (GSB) to produce coherently dedispersed intensity output in real time, for the currently operational bandwidths of 16 MHz and 32 MHz. Provision has also been made to coherently dedisperse voltage beam data from observations recorded on disk. We discuss the design and implementation of the real-time coherent dedispersion system, describing the steps carried out to optimise the performance of the pipeline. Presently functioning on an Intel Xeon X5550 CPU equipped with a NVIDIA Tesla C2075 GPU, the pipeline allows dispersion free, high time resolution data to be obtained in real-time. We illustrate the significant improvements over the existing incoherent dedispersion system at the GMRT, and present some preliminary results obtained from studies of pulsars using this system, demonstrating its potential as a useful tool for low frequency pulsar observations. We describe the salient features of our implementation, comparing it with other recently developed real-time coherent dedispersion systems. This implementation of a real-time coherent dedispersion pipeline for a large, low frequency array instrument like the GMRT, will enable long-term observing programs using coherent dedispersion to be carried out routinely at the observatory. We also outline the possible improvements for such a pipeline, including prospects for the upgraded GMRT which will have bandwidths about ten times larger than at present.
Resumo:
We compare experimental results showing stable dissipative-soliton solutions exist in mode-locked lasers with ultra-large normal dispersion (as large as 21.5 ps2), with both the analytic framework provided by Haus' master-equation and full numerical simulations. © 2010 Optical Society of America.
Resumo:
El presente trabajo de investigación se estableció entre los meses de Abril-Mayo del 2009, bajo sistema de riego por aspersión en la unidad experimental finca Las Mercedes, ubicada en Managua Km. 11 carretera norte, 800 m. entrada al carnic en las coordenadas 12°10’14” a 12°08’05” de latitud Norte y 86°10’22” a 86°09’44” longitud Oeste, a una altura de 56 ms nm. Con el objetivo de evaluar la productividad del rábano en condiciones de manejo orgánico y obtención de los coeficientes del cultivo “ Kc” y de rendimiento “Ky”. Se estableció un bloque completo al azar, con cuatro tratamientos y cuatro repeticiones. Los tratamientos orgánicos evaluados son: lombrihumus a razón de 30000 kg/ha, compost 190000 kg/ha y bocashi a razón de 50000 kg/ha y un tratamiento químico (testigo): fertilizante completo (NPK) formula 12F30F10, a razón de 1290 kg ha F1, todos estos abonos orgánicos se les practicó un análisis químico para conocer la cantidad de nutrientes. El tamaño de la parcela experimental fue de 49 m2 (7×7 m) y el tamaño de cada parcela útil fue de 0.37 m2. Las variables cuantitativas evaluadas fueron; diámetro del tallo, números de hojas, altura de la planta, diámetro de la raíz, peso de la raíz y rendimiento. Las variables de riego fueron; coeficiente del cultivo y coeficiente de rendimiento para cada tratamiento. A los datos obtenidos se les sometió a un análisis devarianza (ANDEVA) y separación de medias mediante el uso de la prueba de Tuke y al 5% utilizando Software estadístico Minitab versión 2000. Los resultados muestran que no hubo diferencia significativa para las variables de crecimiento tomadas en momentos diferentes. En cuanto a las variables de rendimiento la única que mostro significancia fue la variable peso de la raíz, logrando el bocashi el mayor resultado con (22.3g). En cuanto a rendimiento del cultivo los tratamientos no muestran significancia. Con respecto a las variables de rie go, tomando en cuenta las etapas fenológicas del cultivo se le aplico mayor volumen de agua en la fase de mediación y última estación que es donde el cultivo requiere mayor cantidad de agua, para todos los tratamientos se obtuvo un coeficiente de cultivo uniforme. En el caso de la reducción del coeficiente de rendimiento de rábano en los tratamientos orgánicos no se debe a un estrés hídrico o limitación de agua durante que son los periodos más sensibles a la sequia, más bien corresponde a l factor de fertilidad ya que el abono orgánico no va dirigido a liberar grandes cantidades de nutrientes para el cultivo de una sola vez