925 resultados para Enzyme-inhibition assay
Resumo:
Cathepsins are known to have many important physiological roles and provide a viable target for inhibition. Fluorobenzoyl dipeptide derivatives were synthesized and tested for biological activity in an effort to find an efficient inhibitor of the cysteine protease cathepsin L. Thirty-six novel inhibitors (1-36) were synthesized from protected amino acids via the standard DCC/HOBt coupling protocol, containing a benzyl ester or a nitrile as an electrophilic warhead. The activity of the inhibitors was evaluated against cathepsin L and IC50 values calculated. Modification of both amino acids and terminal groups afforded compounds with single digit micromolar inhibition. Results utilizing the benzoyl-L-leucine-glycine nitrile backbone are comparable to that for the commercially available inhibitor 39.
Resumo:
Paralytic shellfish poisoning (PSP) toxins are produced by certain marine dinoflagellates and may accumulate in bivalve molluscs through filter feeding. The Mouse Bioassay (MBA) is the internationally recognised reference method of analysis, but it is prone to technical difficulties and regarded with increasing disapproval due to ethical reasons. As such, alternative methods are required. A rapid surface plasmon resonance (SPR) biosensor inhibition assay was developed to detect PSP toxins in shellfish by employing a saxitoxin polyclonal antibody (R895). Using an assay developed for and validated on the Biacore Q biosensor system, this project focused on transferring the assay to a high-throughput, Biacore T100 biosensor in another laboratory. This was achieved using a prototype PSP toxin kit and recommended assay parameters based on the Biacore Q method. A monoclonal antibody (GT13A) was also assessed. Even though these two instruments are based on SPR principles, they vary widely in their mode of operation including differences in the integrated mu-fluidic cartridges, autosampler system, and sensor chip compatibilities. Shellfish samples (n = 60), extracted using a simple, rapid procedure, were analysed using each platform, and results were compared to AOAC high performance liquid chromatography (HPLC) and MBA methods. The overall agreement, based on statistical 2 x 2 comparison tables, between each method ranged from 85% to 94.4% using R895 and 77.8% to 100% using GT13A. The results demonstrated that the antibody based assays with high sensitivity and broad specificity to PSP toxins can be applied to different biosensor platforms. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Adrenergic receptors (alpha 2, beta 2), plasma noradrenaline, heart rate and the pressor responsiveness to infused noradrenaline were examined in ten healthy male volunteers before and after 2 weeks of placebo or captopril therapy in a double blind cross-over study. No significant differences in these measurements were observed between the captopril and placebo treated groups. The study shows that in sodium replete normotensive subjects, long-term angiotensin converting enzyme inhibition does not lead to changes in adrenoceptor density. There is also no alteration in plasma noradrenaline levels nor in the pressor responsiveness to infused noradrenaline. These data suggest that the known interaction between the renin-angiotensin system and the sympathetic nervous system observed in animals is probably of little significance in man.
Resumo:
Titanium dioxide (TiO2) photocatalysis has been used to initiate the destruction of nodularin, a natural hepatotoxin produced by cyanobacteria. The destruction process was monitored using liquid chromatography-mass spectrometry analysis which has also enabled the identification of a number of the photocatalytic decomposition products. The reduction in toxicity following photocatalytic treatment was evaluated using protein phosphatase inhibition assay, which demonstrated that the destruction of nodularin was paralleled by an elimination of toxicity.
Resumo:
Accurate measurement of the quantitative aspects of enzyme-catalysed reactions
is critical for a deeper understanding of their mechanisms, for their exploitation in biotechnology and for targeting enzymes by drug-like molecules. It is important to move beyond basic enzyme kinetics as encapsulated in the Michaelis-Menten equation. The type and magnitude of inhibition should be determined. Since the majority of enzyme-catalysed reactions involve more than one substrate, it is critical to understand how to treat these reactions quantitatively and how their kinetic behaviour depends on the type of mechanism occurring.
Some reactions do not conform to “standard” Michaelis-Menten treatment and exhibit phenomena such as cooperativity. Again it is important to put these phenomena onto a quantitative basis. Similarly the treatment of the effects of pH on enzymes is often vague and uninformative without a proper quantitative treatment. This review brings together tools and approaches for dealing with enzymes quantitatively together with original references for these approaches.
Characterization of an extracellular alkaline serine protease from marine Engyodontium album BTMFS10
Resumo:
An alkaline protease from marine Engyodontium album was characterized for its physicochemical properties towards evaluation of its suitability for potential industrial applications. Molecular mass of the enzyme by matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) analysis was calculated as 28.6 kDa. Isoelectric focusing yielded pI of 3–4. Enzyme inhibition by phenylmethylsulfonyl fluoride (PMSF) and aprotinin confirmed the serine protease nature of the enzyme.Km, Vmax, and Kcat of the enzyme were 4.727 9 10-2 mg/ml, 394.68 U, and 4.2175 9 10-2 s-1, respectively. Enzyme was noted to be active over a broad range of pH (6–12) and temperature (15–65 C), withmaximumactivity at pH 11 and 60 C. CaCl2 (1 mM), starch (1%), and sucrose (1%) imparted thermal stability at 65 C. Hg2?, Cu2?, Fe3?, Zn2?, Cd?, and Al3? inhibited enzyme activity, while 1 mMCo2? enhanced enzyme activity. Reducing agents enhanced enzyme activity at lower concentrations. The enzyme showed considerable storage stability, and retained its activity in the presence of hydrocarbons, natural oils, surfactants, and most of the organic solvents tested. Results indicate that the marine protease holds potential for use in the detergent industry and for varied applications.
Resumo:
As part of an on-going project to characterize compounds from immature conifer cones with antibacterial or modulatory activity against multidrug-resistant (MDR) strains of Staphylococcus aureus, eight compounds were isolated from the cones of Chatnaecyparis lawsoniana. The active compounds were mainly diterpenes, with minimum inhibitory concentrations ranging from 4 to 128 mu g/ml against MDR effluxing S. aureus strains and two epidemic methicillin-resistant (EMRSA) clinical isolates. The compounds extracted were the diterpenes ferruginol, pisiferol and its epimer 5-epipisiferol, formosanoxide, trans-communic acid and torulosal, the sesquiterpene oplopanonyl acetate and the germacrane 4 beta-hydroxygermacra-1(10)-5-diene. Some of these compounds also exhibited modulatory activity in potentiating antibiotic activity against effluxing strains and ferruginol, used at a sub-inhibitory concentration, resulted in an 80-fold potentiation of oxacillin activity against strain EMRSA-15. An efflux inhibition assay using an S. aureus strain possessing the MDR NorA efflux pump resulted in 40% inhibition of ethidium bromide efflux at 10 mu M ferruginol (2.86 mu g/ml). We report the H-1 and C-13 NMR data for the cis A/B ring junction epimer of pisiferol which we have named 5-epipisiferol. We also unambiguously assign all H-1 and C-13 NMR resonances for trans-communic acid. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The use of natural plant anthelmintics was suggested as a possible alternative control of gastrointestinal nematodes (GIN) in ruminants. Direct anthelmintic effects of tannin-containing plants have already been shown in sheep and goat GIN. These anthelmintic properties are mainly associated with condensed tannins. In the present study, we evaluated possible in vitro effects of three tannin-containing plants against bovine GIN. Effects of Onobrychis viciifolia, Lotus pedunculatus and Lotus corniculatus condensed tannin (CT) extracts on Cooperia oncophora and Ostertagia ostertagi were determined by a larval feeding inhibition assay (LFIA) and a larval exsheathment assay (LEA). In the LFIA, all three plant extracts significantly inhibited larval feeding behaviour of both C. oncophora and O. ostertagi first stage larvae in a dose-dependent manner. The L. pedunculatus extract, based on EC50 (effective concentration for 50% inhibition), was the most effective against both nematodes, followed by O. viciifolia and L. corniculatus. The effect of CT extracts upon larval feeding behaviour correlates with CT content and procyanidin/prodelphidin ratio. Larval exsheathment of C. oncophora and O. ostertagi L3 larvae (third stage larvae) was also affected by CT extracts from all three plants. In both in vitro assays, extracts with added polyvinylpolypyrrolidone, an inhibitor of tannins, generated almost the same values as the negative control; this confirms the role of CT in the anthelmintic effect of these plant extracts. Our results, therefore, indicated that tannin-containing plants could act against cattle nematodes.
Resumo:
Sainfoin (Onobrychis viciifolia) is a condensed tannin (CT)-containing legume and has anthelmintic potential against gastrointestinal nematodes of ruminants. This study investigated in vitro effects of acetone/water extracts and derived CT fractions from different types of sainfoin (i.e. accessions) against larvae of Cooperia oncophora and Ostertagia ostertagi by applying the larval feeding inhibition assay (LFIA). Seven sainfoin accessions were extracted and tested with L1 larvae at 10 and 40 μg extract/ml. In addition, CT in extracts from 4 accessions were fractionated according to polymer size and tested by LFIA at two concentrations (2 and 10 μg CT fraction/ml). All sainfoin extracts caused significant inhibition of L1-feeding of both C. oncophora and O. ostertagi with varying intensity compared to the control (phosphate buffered saline). For both nematode species the in vitro effect was positively correlated with CT content in the extracts, but not with any of the structural CT parameters. In contrast, the 16 CT fractions revealed significant correlations between in vitro effect and CT content, polymer size (mean degree of polymerisation, mDP) and monomeric composition (prodelphinidin percentage, % PD). These differences between crude extracts and purified fractions may stem from the fact that extracts contain complex CT mixtures, which may mask and thus suppress CT structural effects. This study provides the first indication that, apart from CT and % PD content, polymer size also contributes to anthelmintic activity of CTs. The results, therefore, suggest that the inter-accession variability in CT content and composition needs to be taken into account in future plant breeding programmes which seek to enhance the anthelmintic properties of sainfoin
Resumo:
Introduction Facing the challenging treatment of neurodegenerative diseases as well as complex craniofacial injuries such as those common after cancer therapy, the field of regenerative medicine increasingly relies on stem cell transplantation strategies. Here, neural crest-derived stem cells (NCSCs) offer many promising applications, although scale up of clinical-grade processes prior to potential transplantations is currently limiting. In this study, we aimed to establish a clinical-grade, cost-reducing cultivation system for NCSCs isolated from the adult human nose using cGMP-grade Afc-FEP bags. Methods We cultivated human neural crest-derived stem cells from inferior turbinate (ITSCs) in a cell culture bag system using Afc-FEP bags in human blood plasma-supplemented medium. Investigations of viability, proliferation and expression profile of bag-cultured ITSCs were followed by DNA-content and telomerase activity determination. Cultivated ITSCs were introduced to directed in vitro differentiation assays to assess their potential for mesodermal and ectodermal differentiation. Mesodermal differentiation was determined using an enzyme activity assay (alkaline phosphatase, ALP), respective stainings (Alizarin Red S, Von Kossa and Oil Red O), and RT-PCR, while immunocytochemistry and synaptic vesicle recycling were applied to assay neuroectodermal differentiation of ITSCs. Results When cultivated within Afc-FEP bags, ITSCs grew three-dimensionally in a human blood plasma-derived matrix, thereby showing unchanged morphology, proliferation capability, viability and expression profile in comparison to three dimensionally-cultured ITSCs growing in standard cell culture plastics. Genetic stability of bag-cultured ITSCs was further accompanied by unchanged telomerase activity. Importantly, ITSCs retained their potential to differentiate into mesodermal cell types, particularly including ALP-active, Alizarin Red S-, and Von Kossa-positive osteogenic cell types, as well as adipocytes positive in Oil Red O assays. Bag culture further did not affect the potential of ITSCs to undergo differentiation into neuroectodermal cell types coexpressing β-III-tubulin and MAP2 and exhibiting the capability for synaptic vesicle recycling. Conclusions Here, we report for the first time the successful cultivation of human NCSCs within cGMP-grade Afc-FEP bags using a human blood plasma-supplemented medium. Our findings particularly demonstrate the unchanged differentiation capability and genetic stability of the cultivated NCSCs, suggesting the great potential of this culture system for future medical applications in the field of regenerative medicine.
Resumo:
Plants containing condensed tannins (CTs) may hold promise as alternatives to synthetic anthelmintic (AH) drugs for controlling gastrointestinal nematodes (GINs). However, the structural features that contribute to the AH activities of CTs remain elusive. This study probed the relationships between CT structures and their AH activities. Eighteen plant resources were selected based on their diverse CT structures. From each plant resource, two CT fractions were isolated and their in vitro AH activities were measured with the Larval Exsheathment Inhibition Assay, which was applied to Haemonchus contortus and Trichostrongylus colubriformis. Calculation of mean EC50 values indicated that H. contortus was more susceptible than T colubriformis to the different fractions and that the F1 fractions were less efficient than the F2 ones, as indicated by the respective mean values for H.contortus F1 = 136.9 ± 74.1 µg/ml; and for H.contortus F2 = 108.1 ± 53.2 µg/ml and for T colubriformis F1 = 233 ± 54.3 µg/ml and F2=166 ± 39.9 µg/ml. The results showed that the AH activity against H. contortus was associated with the monomeric subunits that give rise to prodelphinidins (P < 0.05) and with CT polymer size (P < 0.10). However, for T. colubriformis AH activity was correlated only with prodelphinidins (P < 0.05). These results suggest that CTs have different modes of action against different parasite species.
Resumo:
Plants containing condensed tannins (CT) may have potential to control gastrointestinal nematodes (GIN) of cattle. The aim was to investigate the anthelmintic activities of four flavan-3-ols, two galloyl derivatives and 14 purified CT fractions, and to define which structural features of CT determine the anti-parasitic effects against the main cattle nematodes. We used in vitro tests targeting L1 larvae (feeding inhibition assay) and adults (motility assay) of Ostertagia ostertagi and Cooperia oncophora. In the larval feeding inhibition assay, O. ostertagi L1 were significantly more susceptible to all CT fractions than C. oncophora L1. The mean degree of polymerization of CT (i.e. average size) was the most important structural parameter: large CT reduced larval feeding more than small CT. The flavan-3-ols of prodelphinidin (PD)-type tannins had a stronger negative influence on parasite activity than the stereochemistry, i.e. cis- vs trans-configurations, or the presence of a gallate group. In contrast, for C. oncophora high reductions in the motility of larvae and adult worms were strongly related with a higher percentage of PDs within the CT fractions while there was no effect of size. Overall, the size and the percentage of PDs within CT seemed to be the most important parameters that influence anti-parasitic activity.
Resumo:
Proanthocyanindins (PAs) from shea meal (SM), a by-product obtained after lipid extraction of the nuts, contained B-type linkages, had a high ratio of prodelphinidins (73%) and were galloylated (42%). The average polymer size was 8 flavan-3-ol subunits (≈2384 Daltons) and epigallocatechin gallate was the major subunit. Purified PA fractions from SM were tested in vitro for anthelmintic properties against gastrointestinal nematodes from ruminants (H. contortus and T. colubriformis) [1] by the larval exsheathment inhibition assay and from pigs (A. suum) by the larval migration inhibition assay. Results showed that PAs from SM have a potent anthelmintic activity against those parasites similar to white clover (Trifolium repens) flowers (WCF) [1, 2] (EC50 µg/mL; SM: 55.1, 16.5, 75.9; WCF: 37.4, 14.5, 110.1 for A. suum, H. contortus and T. colubriformis respectively). WCF PAs are constituted almost exclusively of prodelphinidin (PD) compared to SM (98% vs. 73%) but do not contained galloylated PAs. Studies [1, 2] have shown that anthelmintic activity of PAs was mainly associated with their PD ratio but our current results suggest that galloylation can be a major factor to anthelmintic activity and SM as a potential nutraceutical anthelmintic feed for controlling parasitic nematodes.
Resumo:
The signalling pathway CD40/CD40L (CD40 ligand) plays an important role in atherosclerotic plaque formation and rupture. AngII (angiotensin II), which induces oxidative stress and inflammation, is also implicated in the progression of atherosclerosis. In the present study, we tested the hypothesis that AngII increases CD40/CD40L activity in vascular cells and that ROS (reactive oxygen species) are part of the signalling cascade that controls CD40/CD40L expression. Human CASMCs (coronary artery smooth muscle cells) in culture exposed to IL (interleukin)-1 beta or TNF-alpha (tumour necrosis factor-a) had increased superoxide generation and enhanced CD40 expression, detected by EPR (electron paramagnetic resonance) and immunoblotting respectively. Both phenomena were abolished by previous incubation with membrane-permeant antioxidants or cell transfection with P22(phox) antisense. AngII (50-200 nmol/l) induced an early and sustained increase in CD40 mRNA and protein expression in CASMCs, which was blocked by treatment with antioxidants. Increased CD40 expression led to enhanced activity of the pathway, as AngII-treated cells stimulated with recombinant CD40L released higher amounts of IL-8 and had increased COX-2 (cyclo-oxygenase-2) expression. We conclude that AngII stimulation of vascular cells leads to a ROS-dependent increase in CD40/CD40L signalling pathway activity. This phenomenon may be an important mechanism modulating the arterial injury observed in atherosclerosis-related vasculopathy.
Resumo:
Subtype F wild type HIV protease has been kinetically characterized using six commercial inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) commonly used for HIV/AIDS treatment, as well as inhibitor TL-3 and acetylpepstatin. We also obtained kinetic parameters for two multi-resistant proteases (one of subtype B and one of subtype F) harboring primary and secondary mutations selected by intensive treatment with ritonavir/nelfinavir. This newly obtained biochemical data shows that all six studied commercially available protease inhibitors are significantly less effective against subtype F HIV proteases than against HIV proteases of subtype B, as judged by increased K(i) and biochemical fitness (vitality) values. Comparison with previously reported kinetic values for subtype A and C HIV proteases show that subtype F wild type proteases are significantly less susceptible to inhibition. These results demonstrate that the accumulation of natural polymorphisms in subtype F proteases yields catalytically more active enzymes with a large degree of cross-resistance, which thus results in strong virus viability.