969 resultados para Device design


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A compact microfluidic device with 96 microchambers allocated within four circular units was designed and examined for cell distribution. In each unit, cells were distributed to the surrounding chambers radially from the center. The circular arrangement of the chambers makes the design simple and compact. A controllable and quantitative cell distribution is achievable in this device. This design is significant to the microfluidic applications where controllable distribution of cells in multipule microchambers is demanded.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents design and simulation of a circular meander dipole antenna at the industrial, scientific, and medical band of 915 MHz for energy scavenging in a passive head-mountable deep brain stimulation device. The interaction of the proposed antenna with a rat body is modeled and discussed. In the antenna, the radiating layer is meandered, and a FR-4 substrate is used to limit the radius and height of the antenna to 14 mm and 1.60 mm, respectively. The resonance frequency of the designed antenna is 915 MHz and the bandwidth of 15 MHz at a return loss of -10 dB in free space. To model the interaction of the antenna with a rat body, two aspects including functional and biological are considered. The functional aspect includes input impedance, resonance frequency, gain pattern, radiation efficiency of the antenna, and the biological aspect involves electric field distribution, and SAR value. A complete rat model is used in the finite difference time domain based EM simulation software XFdtd. The simulated results demonstrate that the specific absorption rate distributions occur within the skull in the rat model, and their values are higher than the standard regulated values for the antenna receiving power of 1W.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an Electrowetting-on-Dielectric (EWOD) device with optimized insulating layers operated by low actuation voltage. The device consists of an electrode array on a silicon substrate, covered by a dielectric layer and a hydrophobic layer. To characterize the performance of the device, simulations are performed for the dielectric layer of Sio2 and the hydrophobic layer of Sio2, Su-8 and Parylene C at different voltages. The volume finite difference approach of the Coventorware software was used to carry out the simulations. Two different molar of di-ionized water droplet were considered in the simulations. It was observed that the device having the Sio2 dielectric layer and the Parylene C hydrophobic layer moved the 1M KCL (potassium chloride) droplet at the actuation voltage of 25V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This PhD work explored a novel bio-inspired approach for designing artificial blood vessel implants known as stent-grafts. The design was inspired from body design of a caterpillar. This design concept induced natural flexibility and expandability property in the new stent-graft, which is considered critical in deciding long-term health of treated patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Negli ultimi anni, parallelamente allo sviluppo di calcolatori elettronici sempre più performanti, la fluidodinamica computazionale è diventata uno strumento di notevole utilità nell’analisi dei flussi e nello sviluppo di dispositivi medici. Quando impiegate nello studio di flussi di fluidi fisiologici, come il sangue, il vantaggio principale delle analisi CFD è che permettono di caratterizzare il comportamento fluidodinamico senza dover eseguire test in-vivo/in-vitro, consentendo quindi notevoli vantaggi in termini di tempo, denaro e rischio derivante da applicazioni mediche. Inoltre, simulazioni CFD offrono una precisa e dettagliata descrizione di ogni parametro di interesse permettendo, già in fase di progettazione, di prevedere quali modifiche al layout garantiranno maggiori vantaggi in termini di funzionalità. Il presente lavoro di tesi si è posto l’obiettivo di valutare, tramite simulazioni CFD, le performances fluidodinamiche del comparto sangue “camera venosa” di un dispositivo medico monouso Bellco impiegato nella realizzazione di trattamenti di emodialisi. Dopo una panoramica del contesto, è presentata una breve descrizione della disfunzione renale e dei trattamenti sostitutivi. Notevole impegno è stato in seguito rivolto allo studio della letteratura scientifica in modo da definire un modello reologico per il fluido non-Newtoniano preso in considerazione e determinarne i parametri caratteristici. Il terzo capitolo presenta lo stato dell’arte delle apparecchiature Bellco, rivolgendosi con particolare attenzione al componente “cassette” del dispositivo monouso. L’analisi fluidodinamica del compartimento “camera venosa” della cassette, che sarà presa in considerazione nei capitoli quinto e sesto, si inserisce nell’ambito della riprogettazione del dispositivo attualmente in commercio: il quarto capitolo si incentra sul suo nuovo design, ponendo specifico interesse sul layout della camera venosa di nuova generazione. Per lo studio dei flussi che si sviluppano internamente ad essa ci si è avvalsi del modulo CFD del software COMSOL multiphysics® (versione 5.0); la definizione del modello implementato e della tipologia di studio effettuato sono presi in considerazione nel quinto capitolo. Le problematiche di maggior impatto nella realizzazione di un trattamento di emodialisi sono l’emolisi e la coagulazione del sangue. Nell'evenienza che si verifichino massivamente occorre infatti interrompere il trattamento con notevoli disagi per il paziente, per questo devono essere evitate. Nel sesto capitolo i risultati ottenuti sono stati esaminati rivolgendo particolare attenzione alla verifica dell’assenza di fenomeni che possano portare alle problematiche suddette.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new hearing therapy based on direct acoustic cochlear stimulation was developed for the treatment of severe to profound mixed hearing loss. The device efficacy was validated in an initial clinical trial with four patients. This semi-implantable investigational device consists of an externally worn audio processor, a percutaneous connector, and an implantable microactuator. The actuator is placed in the mastoid bone, right behind the external auditory canal. It generates vibrations that are directly coupled to the inner ear fluids and that, therefore, bypass the external and the middle ear. The system is able to provide an equivalent sound pressure level of 125 dB over the frequency range between 125 and 8000 Hz. The hermetically sealed actuator is designed to provide maximal output power by keeping its dimensions small enough to enable implantation. A network model is used to simulate the dynamic characteristics of the actuator to adjust its transfer function to the characteristics of the middle ear. The geometry of the different actuator components is optimized using finite-element modeling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Gracias Laboratory at Johns Hopkins University has developed microgrippers which utilize chemically-actuated joints to be used in micro-surgery. These grippers, however, take up to thirty minutes to close fully when activated biochemicals in the human body. This is very problematic and could limit the use of the devices in surgery. It is the goal of this research to develop a gripper that uses theGracias Laboratory's existing joints in conjunction with mechanical components to decrease the closing time. The purpose of including the mechanical components is to induce a state of instability at which time a small perturbation would cause the joint to close fully.The main concept of the research was to use the lateral buckling of a triangular gripper geometry and use a toggle mechanism to decrease the closure time of the device. This would create a snap-action device mimicking the quick closure of a Venus flytrap. All developed geometries were tested using finite element analysis to determine ifloading conditions produced the desired buckled shape. This research examines lateral buckling on the micro-scale and the possibility ofusing this phenomenon in a micro-gripper. Although a final geometry with the required deformed shaped was not found, this document contains suggestions for future geometries that may produce the correct deformed shape. It was determined through this work that in order to obtain the desired deformed shape, polymeric sections need to be added to the geometry. This simplifies the analysis and allows the triangular structure to buckle in the appropriate way due to the added joints. Future work for this project will be completed by undergraduate students at Bucknell University. Fabrication and testing of devices will be done at Johns Hopkins University in the Gracias Laboratory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: In this work, we present the analysis, design and optimization of one experimental device recently developed in the UK, called the 'GP' Thrombus Aspiration Device (GPTAD). This device has been designed to remove blood clots without the need to make contact with the clot itself thereby potentially reducing the risk of problems such as downstream embolisation. Method: To obtain the minimum pressure necessary to extract the clot and to optimize the device, we have simulated the performance of the GPTAD analysing the resistances, compliances and inertances effects. We model a range of diameters for the GPTAD considering different forces of adhesion of the blood clot to the artery wall, and different lengths of blood clot. In each case we determine the optimum pressure required to extract the blood clot from the artery using the GPTAD, which is attached at its proximal end to a suction pump. Result: We then compare the results of our mathematical modelling to measurements made in laboratory using plastic tube models of arteries of comparable diameter. We use abattoir porcine blood clots that are extracted using the GPTAD. The suction pressures required for such clot extraction in the plastic tube models compare favourably with those predicted by the mathematical modelling. Discussion & Conclusion: We conclude therefore that the mathematical modelling is a useful technique in predicting the performance of the GPTAD and may potentially be used in optimising the design of the device.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since the memristor was first built in 2008 at HP Labs, no end of devices and models have been presented. Also, new applications appear frequently. However, the integration of the device at the circuit level is not straightforward, because available models are still immature and/or suppose high computational loads, making their simulation long and cumbersome. This study assists circuit/systems designers in the integration of memristors in their applications, while aiding model developers in the validation of their proposals. We introduce the use of a memristor application framework to support the work of both the model developer and the circuit designer. First, the framework includes a library with the best-known memristor models, being easily extensible with upcoming models. Systematic modifications have been applied to these models to provide better convergence and significant simulations speedups. Second, a quick device simulator allows the study of the response of the models under different scenarios, helping the designer with the stimuli and operation time selection. Third, fine tuning of the device including parameters variations and threshold determination is also supported. Finally, SPICE/Spectre subcircuit generation is provided to ease the integration of the devices in application circuits. The framework provides the designer with total control overconvergence, computational load, and the evolution of system variables, overcoming usual problems in the integration of memristive devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (M.S.)--University of Illinois.