1000 resultados para ant abundance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a probabilistic movement model for controlling ant-like agents foraging between two points. Such agents are all identical, simple, autonomous and can only communicate indirectly through the environment. These agents secrete two types of pheromone, one to mark trails towards the goal and another to mark trails back to the starting point. Three pheromone perception strategies are proposed (Strategy A, B and C). Agents that use strategy A perceive the desirability of a neighbouring location as the difference between levels of attractive and repulsive pheromone in that location. With strategy B, agents perceive the desirability of a location as the quotient of levels of attractive and repulsive pheromone. Agents using strategy C determine the product of the levels of attractive pheromone with the complement of levels of repulsive pheromone. We conduct experiments to confirm directionality as emergent property of trails formed by agents that use each strategy. In addition, we compare path formation speed and the quality of the formed path under changes in the environment. We also investigate each strategy's robustness in environments that contain obstacles. Finally, we investigate how adaptive each strategy is when obstacles are eventually removed from the scene and find that the best strategy of these three is strategy A. Such a strategy provides useful guidelines to researchers in further applications of swarm intelligence metaphors for complex problem solving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the biological and environmental factors that limit the distribution and abundance of organisms is central to our understanding of the niche concept and crucial for predicting how species may respond to large-scale environmental change, such as global warming. However, detailed ecological information for the majority of species has been collected only at a local scale, and insufficient consideration has been given to geographical variation in intraspecific niche requirements. To evaluate the influence of environmental and biological factors on patterns of species distribution and abundance, we conducted a detailed, broadscale study across the tropical savannas of northern Australia on the ecology of three large, sympatric marsupial herbivores (family Macropodidae): the antilopine wallaroo (Macropus antilopinus), common wallaroo (M. robustus), and eastern grey kangaroo (M. giganteus). Using information on species abundance, climate, fire history, habitat, and resource availability, we constructed species' habitat models varying from the level of the complete distribution to smaller regional areas. Multiple factors affected macropod abundance, and the importance of these factors was dependent on the spatial scale of analyses. Fire regimes, water availability, geology, and soil type and climate were most important at the large scale, whereas aspects of habitat structure and interspecific species abundance were important at smaller scales. The distribution and abundance of eastern grey kangaroos and common wallaroos were strongly influenced by climate. Our results suggest that interspecific competition between antilopine wallaroos and eastern grey kangaroos may occur. The antilopine wallaroo and eastern grey kangaroo (grazers) preferred more nutrient-rich soils than the common wallaroo (grazer/browser), which we relate to differences in feeding modes. The abundance of antilopine wallaroos was higher on sites that were burned, whereas the abundance of common wallaroos was higher on unburned sites. Future climate change predicted for Australia has the capacity to seriously affect the abundance and conservation of macropod species in tropical savannas. The results of our models suggest that, in particular, the effects of changing climatic conditions on fire regimes, habitat structure, and water availability may lead to species declines and marked changes in macropod communities.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

* 1
Much recent research has focused on the use of species distribution models to explore the influence(s) of environment (predominantly climate) on species’ distributions. A weakness of this approach is that it typically does not consider effects of biotic interactions, including competition, on species’ distributions.
* 2
Here we identify and quantify the contribution of environmental factors relative to biotic factors (interspecific competition) to the distribution and abundance of three large, wide-ranging herbivores, the antilopine wallaroo (Macropus antilopinus), common wallaroo (Macropus robustus) and eastern grey kangaroo (Macropus giganteus), across an extensive zone of sympatry in tropical northern Australia.
* 3
To assess the importance of competition relative to habitat features, we constructed models of abundance for each species incorporating habitat only and habitat + the abundance of the other species, and compared their respective likelihoods using Akaike's information criterion. We further assessed the importance of variables predicting abundance across models for each species.
* 4
The best-supported models of antilopine wallaroo and eastern grey kangaroo abundance included both habitat and the abundance of the other species, providing evidence of interspecific competition. Contrastingly, models of common wallaroo abundance were largely influenced by climate and not the abundance of other species. The abundance of antilopine wallaroos was most influenced by water availability, eastern grey kangaroo abundance and the frequency of late season fires. The abundance of eastern grey kangaroos was most influenced by aspects of climate, antilopine wallaroo abundance and a measure of cattle abundance.
* 5
Our study demonstrates that where census and habitat data are available, it is possible to reveal species’ interactions (and measure their relative strength and direction) between large, mobile and/or widely-distributed species for which competition is difficult to demonstrate experimentally. This allows discrimination of the influences of environmental factors and species interactions on species’ distributions, and should therefore improve the predictive power of species distribution models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The males of some species of moths possess elaborate feathery antennae. It is widely assumed that these striking morphological features have evolved through selection for males with greater sensitivity to the female sex pheromone, which is typically released in minute quantities. Accordingly, females of species in which males have elaborate (i.e., pectinate, bipectinate, or quadripectinate) antennae should produce the smallest quantities of pheromone. Alternatively, antennal morphology may be associated with the chemical properties of the pheromone components, with elaborate antennae being associated with pheromones that diffuse more quickly (i.e., have lower molecular weights). Finally, antennal morphology may reflect population structure, with low population abundance selecting for higher sensitivity and hence more elaborate antennae. We conducted a phylogenetic comparative analysis to test these explanations using pheromone chemical data and trapping data for 152 moth species. Elaborate antennae are associated with larger body size (longer forewing length), which suggests a biological cost that smaller moth species cannot bear. Body size is also positively correlated with pheromone titre and negatively correlated with population abundance (estimated by male abundance). Removing the effects of body size revealed no association between the shape of antennae and either pheromone titre, male abundance, or mean molecular weight of the pheromone components. However, among species with elaborate antennae, longer antennae were typically associated with lower male abundances and pheromone compounds with lower molecular weight, suggesting that male distribution and a more rapidly diffusing female sex pheromone may influence the size but not the general shape of male antennae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urbanisation is increasing rapidly, impacting on a broad range of species. The proliferation of electric light has transformed the night time environment; however, our understanding on the effects of artificial night lighting on fauna, including nocturnal birds, is extremely limited. The aim ofthis research was to determine whether artificial night light affected the abundance of nocturnal birds. Spotlighting surveys were undertaken in Research Park, Melbourne, Victoria, along three 300 m transects. Each transect was surveyed five times during three light treatments: when lights were on, 20 minutes after lights were turned off and when lights were absent, over a period often nights. A total of 123 nocturnal birds was detected during survey nights. Two species were recorded - the Southern Boobook Ninox novaeseelandiae and the Tawny Frogmouth Podargus strigoides. The Tawny Frogmouth was detected along all three transects (n=121); however, the Southern Boobook was detected along one transect only (n=2). None of the light treatments had a significant effect on bird abundance. Neither did location, habitat or the combined effects of light treatments, location and habitat. The results of this research will contribute to a growing body of knowledge and support future conservation activities for species in areas undergoing urbanisation. {The Victorian Naturalist 127 (5) 2010, 192-195).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most cavity-dependent species select tree-cavities with a narrow range of characteristics so that only a small subset of available cavities may be suitable for any species. Most surveys for tree-cavities are done from the ground using binoculars to reduce effort, but this technique is prone to error. These errors are likely to contribute to the loss of the cavity resource when used to inform conservation efforts for cavity-dependent species. The Swift Parrot (Lathamus discolor) is an endangered migratory bird threatened by ongoing removal of cavity-bearing trees by production forestry. We climbed trees with cavities used for nesting by Swift Parrots and determined that they prefer cavities with small entrances, deep chambers and wide floors. Such cavities are rare and occur in large trees that support higher than average numbers of tree-cavities. Importantly, cavities used by Swift Parrots were also likely to be both overestimated and underestimated using ground-based surveys, and without calibration by climbing, the size and direction of survey error could not be determined. We conclude that the most effective way to gain detailed information about the characteristics and abundance of tree-cavities is to climb a representative sample of trees to calibrate ground-based methods for a specific ecosystem.